883 resultados para Performance evolution due time
Resumo:
Vendors provide reference process models as consolidated, off-the-shelf solutions to capture best practices in a given industry domain. Customers can then adapt these models to suit their specific requirements. Traditional process flexibility approaches facilitate this operation, but do not fully address it as they do not sufficiently take controlled change guided by vendors’ reference models into account. This tension between the customer’s freedom of adapting reference models, and the ability to incorporate with relatively low effort vendor-initiated reference model changes, thus needs to be carefully balanced. This paper introduces process extensibility as a new paradigm for customising reference processes and managing their evolution over time. Process extensibility mandates a clear recognition of the different responsibilities and interests of reference model vendors and consumers, and is concerned with keeping the effort of customer-side reference model adaptations low while allowing sufficient room for model change.
Resumo:
Idol is a collaborative performance work for vocal performer and dancers. The work explores movement and sound relative to a vocal interface called the eMic (Extended Microphone Interface Controller). The eMic is a gestural controller designed by the composer for live vocal performance an real-time processing. The process for generating the work involves the choreographer being provided an opportunity to experiment with gestures ad movement relative to the eMic interface. The choreographer explored the interface as an object,a prop, an instrument and as an extension of the body. the movement was then videoed and the data coming from the sensors simultaneously recorded. The data and the video were then used as part of the compositional process, allowing the composer to see what the performance looks like and to experiment with mapping strategies using the captured sensor data. This approach represents a new compositional direction for working with the eMic, in that previously the compositional process commenced at the computer, building processing patches and assigning parameters to eMic sensors. In order to play the composition, the body needed to adapt to 'playing' the instrument. This approach treats the eMic like a traditional instrument that requires the human body to develop a command over the instrument. Working with the movement as a starting point inverts the process using choreographic gestures as the basis for musical structures.
Resumo:
The Silk Road Project was a practice-based research project investigating the potential of motion capture technology to inform perceptions of embodiment in dance performance. The project created a multi-disciplinary collaborative performance event using dance performance and real-time motion capture at Deakin University’s Deakin Motion Lab. Performances at Deakin University, December 2007.
Resumo:
Shrinking product lifecycles, tough international competition, swiftly changing technologies, ever increasing customer quality expectation and demanding high variety options are some of the forces that drive next generation of development processes. To overcome these challenges, design cost and development time of product has to be reduced as well as quality to be improved. Design reuse is considered one of the lean strategies to win the race in this competitive environment. design reuse can reduce the product development time, product development cost as well as number of defects which will ultimately influence the product performance in cost, time and quality. However, it has been found that no or little work has been carried out for quantifying the effectiveness of design reuse in product development performance such as design cost, development time and quality. Therefore, in this study we propose a systematic design reuse based product design framework and developed a design leanness index (DLI) as a measure of effectiveness of design reuse. The DLI is a representative measure of reuse effectiveness in cost, development time and quality. Through this index, a clear relationship between reuse measure and product development performance metrics has been established. Finally, a cost based model has been developed to maximise the design leanness index for a product within the given set of constraints achieving leanness in design process.
Resumo:
A basic element in advertising strategy is the choice of an appeal. In business-to-business (B2B) marketing communication, a long-standing approach relies on literal and factual, benefit-laden messages. Given the highly complex, costly and involved processes of business purchases, such approaches are certainly understandable. This project challenges the traditional B2B approach and asks if an alternative approach—using symbolic messages that operate at a more intrinsic or emotional level—is effective in the B2B arena. As an alternative to literal (factual) messages, there is an emerging body of literature that asserts stronger, more enduring results can be achieved through symbolic messages (imagery or text) in an advertisement. The present study contributes to this stream of research. From a theoretical standpoint, the study explores differences in literal-symbolic message content in B2B advertisements. There has been much discussion—mainly in the consumer literature—on the ability of symbolic messages to motivate a prospect to process advertising information by necessitating more elaborate processing and comprehension. Business buyers are regarded as less receptive to indirect or implicit appeals because their purchase decisions are based on direct evidence of product superiority. It is argued here, that these same buyers may be equally influenced by advertising that stimulates internally-directed motivation, feelings and cognitions about the brand. Thus far, studies on the effect of literalism and symbolism are fragmented, and few focus on the B2B market. While there have been many studies about the effects of symbolism no adequate scale exists to measure the continuum of literalism-symbolism. Therefore, a first task for this study was to develop such a scale. Following scale development, content analysis of 748 B2B print advertisements was undertaken to investigate whether differences in literalism-symbolism led to higher advertising performance. Variations of time and industry were also measured. From a practical perspective, the results challenge the prevailing B2B practice of relying on literal messages. While definitive support was not established for the use of symbolic message content, literal messages also failed to predict advertising performance. If the ‘fact, benefit laden’ assumption within B2B advertising cannot be supported, then other approaches used in the business-to-consumer (B2C) sector, such as symbolic messages may be also appropriate in business markets. Further research will need to test the potential effects of such messages, thereby building a revised foundation that can help drive advances in B2B advertising. Finally, the study offers a contribution to the growing body of knowledge on symbolism in advertising. While the specific focus of the study relates to B2B advertising, the Literalism-Symbolism scale developed here provides a reliable measure to evaluate literal and symbolic message content in all print advertisements. The value of this scale to advance our understanding about message strategy may be significant in future consumer and business advertising research.
Resumo:
Any incident on motorways potentially can be followed by secondary crashes. Rear-end crashes also could happen as a result of queue formation downstream of high speed platoons. To decrease the occurrence of secondary crashes and rear-end crashes, Variable Speed Limits (VSL) can be applied to protect queue formed downstream. This paper focuses on fine tuning the Queue Protection algorithm of VSL. Three performance indicators: activation time, deactivation time and number of false alarms are selected to optimise the Queue Protection algorithm. A calibrated microscopic traffic simulation model of Pacific Motorway in Brisbane is used for the optimisation. Performance of VSL during an incident and heavy congestion and the benefit of VSL will be presented in the paper.
Resumo:
Early models of bankruptcy prediction employed financial ratios drawn from pre-bankruptcy financial statements and performed well both in-sample and out-of-sample. Since then there has been an ongoing effort in the literature to develop models with even greater predictive performance. A significant innovation in the literature was the introduction into bankruptcy prediction models of capital market data such as excess stock returns and stock return volatility, along with the application of the Black–Scholes–Merton option-pricing model. In this note, we test five key bankruptcy models from the literature using an upto- date data set and find that they each contain unique information regarding the probability of bankruptcy but that their performance varies over time. We build a new model comprising key variables from each of the five models and add a new variable that proxies for the degree of diversification within the firm. The degree of diversification is shown to be negatively associated with the risk of bankruptcy. This more general model outperforms the existing models in a variety of in-sample and out-of-sample tests.
Resumo:
‘Grounded Media’ is a form of art practice focused around the understanding that our ecological crisis is also a cultural crisis, perpetuated by our sense of separation from the material and immaterial ecologies upon which we depend. This misunderstanding of relationships manifests not only as environmental breakdown, but also in the hemorrhaging of our social fabric. ‘Grounded Media’ is consistent with an approach to media art making that I name ‘ecosophical’ and ‘praxis-led’ – which seeks through a range of strategies, to draw attention to the integrity, diversity and efficacy of the biophysical, social and electronic environments of which we are an integral part. It undertakes this through particular choices of location, interaction design,participative strategies and performative direction. This form of working emerged out of the production of two major projects, Grounded Light [8] and Shifting Intimacies [9] and is evident in a recent prototypical wearable art project called In_Step [6]. The following analysis and reflections will assist in promoting new, sustainable roles for media artists who are similarly interested in attuning their practices.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.
Resumo:
Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.
Resumo:
One cannot help but be impressed by the inroads that digital oilfield technologies have made into the exploration and production (E&P) industry in the past decade. Today’s production systems can be monitored by “smart” sensors that allow engineers to observe almost any aspect of performance in real time. Our understanding of how reservoirs are behaving has improved considerably since the dawn of this revolution, and the industry has been able to move away from point answers to more holistic “big picture” integrated solutions. Indeed, the industry has already reaped the rewards of many of these kinds of investments. Many billions of dollars of value have been delivered by this heightened awareness of what is going on within our assets and the world around them (Van Den Berg et al. 2010).
Resumo:
The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.
Resumo:
This thesis explored traffic characteristics at the aggregate level for area-wide traffic monitoring of large urban area. It focused on three aspects: understanding a macroscopic network performance under real-time traffic information provision, measuring traffic performance of a signalised arterial network using available data sets, and discussing network zoning for monitoring purposes in the case of Brisbane, Australia. This work presented the use of probe vehicle data for estimating traffic state variables, and illustrated dynamic features of regional traffic performance of Brisbane. The results confirmed the viability and effectiveness of area-wide traffic monitoring.