930 resultados para Pattern classification
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this cross-sectional, descriptive study was to identify the activities of the Nursing Intervention Classification considered as priorities for an Ineffective Breathing Pattern and not performed for elderly inpatients of a teaching hospital in the state of Goias. The study participants were 43 nursing professionals, and data collection was performed in the period spanning October to December 2008, after receiving approval from the Ethics Committee. It was observed that among the 67 activities considered to be priorities for the referred diagnosis, only seven were performed by all of the participants; the other activities, with a varied frequency, were not performed, with the main reason cited being that a professional from a different area completed the activity. It is understood that the fact that the nursing staff does not perform these activities can cause lack of complete coverage in nursing care; therefore there is a need for a legal apparatus to describe the activities that comprise professional practice exclusive to nursing personnel and those activities that have an interdisciplinary nature.
Resumo:
Biogeography has been difficult to apply as a methodological approach because organismic biology is incomplete at levels where the process of formulating comparisons and analogies is complex. The study of insect biogeography became necessary because insects possess numerous evolutionary traits and play an important role as pollinators. Among insects, the euglossine bees, or orchid bees, attract interest because the study of their biology allows us to explain important steps in the evolution of social behavior and many other adaptive tradeoffs. We analyzed the distribution of morphological characteristics in Colombian orchid bees from an ecological perspective. The aim of this study was to observe the distribution of these attributes on a regional basis. Data corresponding to Colombian euglossine species were ordered with a correspondence analysis and with subsequent hierarchical clustering. Later, and based on community proprieties, we compared the resulting hierarchical model with the collection localities to seek to identify a biogeographic classification pattern. From this analysis, we derived a model that classifies the territory of Colombia into 11 biogeographic units or natural clusters. Ecological assumptions in concordance with the derived classification levels suggest that species characteristics associated with flight performance, nectar uptake, and social behavior are the factors that served to produce the current geographical structure.
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.
Resumo:
The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.
Resumo:
[EN]In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.
Resumo:
[EN]In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%.
Resumo:
One of the problems in the analysis of nucleus-nucleus collisions is to get information on the value of the impact parameter b. This work consists in the application of pattern recognition techniques aimed at associating values of b to groups of events. To this end, a support vec- tor machine (SVM) classifier is adopted to analyze multifragmentation reactions. This method allows to backtracing the values of b through a particular multidimensional analysis. The SVM classification con- sists of two main phase. In the first one, known as training phase, the classifier learns to discriminate the events that are generated by two different model:Classical Molecular Dynamics (CMD) and Heavy- Ion Phase-Space Exploration (HIPSE) for the reaction: 58Ni +48 Ca at 25 AMeV. To check the classification of events in the second one, known as test phase, what has been learned is tested on new events generated by the same models. These new results have been com- pared to the ones obtained through others techniques of backtracing the impact parameter. Our tests show that, following this approach, the central collisions and peripheral collisions, for the CMD events, are always better classified with respect to the classification by the others techniques of backtracing. We have finally performed the SVM classification on the experimental data measured by NUCL-EX col- laboration with CHIMERA apparatus for the previous reaction.
Resumo:
[EN]Gender information may serve to automatically modulate interaction to the user needs, among other applications. Within the Computer Vision community, gender classification (GC) has mainly been accomplished with the facial pattern. Periocular biometrics has recently attracted researchers attention with successful results in the context of identity recognition. But, there is a lack of experimental evaluation of the periocular pattern for GC in the wild. The aim of this paper is to study the performance of this specific facial area in the currently most challenging large dataset for the problem.
Resumo:
Reticulate eruptions of vascular origin may represent an underlying arterial, venous, microvascular or combined pathology. In the presence of arterial pathology, individual rings are centred around ascending arterial vessels that supply the corresponding area of skin within an arterial hexagon that clinically presents with a blanched centre. Confluence of multiple arterial hexagons generates a stellate (star-like) pattern. In the presence of a primary venous pathology, individual rings correspond to the underlying reticular veins forming multiple venous rings. Focal involvement of a limited number of vessels presents with a branched (racemosa) configuration while a generalized involvement forms a reticulate (net-like) pattern. 'Livedo' refers to the colour and not the pattern of the eruption. Primary livedo reticularis (Syn. cutis marmorata) is a physiological response to cold and presents with a diffuse blanchable reticulate eruption due to vasospasm of the feeding arteries and sluggish flow and hyperviscosity in the draining veins. Livedo reticularis may be secondary to underlying conditions associated with hyperviscosity of blood. Livedo racemosa is an irregular, branched eruption that is only partially-blanchable or non-blanchable and always signifies a pathological process. Retiform purpura may be primarily inflammatory with secondary haemorrhage or thrombohaemorrhagic, as seen in disseminated intravascular coagulopathy.
Resumo:
Unconscious perception is commonly described as a phenomenon that is not under intentional control and relies on automatic processes. We challenge this view by arguing that some automatic processes may indeed be under intentional control, which is implemented in task-sets that define how the task is to be performed. In consequence, those prime attributes that are relevant to the task will be most effective. To investigate this hypothesis, we used a paradigm which has been shown to yield reliable short-lived priming in tasks based on semantic classification of words. This type of study uses fast, well practised classification responses, whereby responses to targets are much less accurate if prime and target belong to a different category than if they belong to the same category. In three experiments, we investigated whether the intention to classify the same words with respect to different semantic categories had a differential effect on priming. The results suggest that this was indeed the case: Priming varied with the task in all experiments. However, although participants reported not seeing the primes, they were able to classify the primes better than chance using the classification task they had used before with the targets. When a lexical task was used for discrimination in experiment 4, masked primes could however not be discriminated. Also, priming was as pronounced when the primes were visible as when they were invisible. The pattern of results suggests that participants had intentional control on prime processing, even if they reported not seeing the primes.
Resumo:
OBJECT: In this study, 1H magnetic resonance (MR) spectroscopy was prospectively tested as a reliable method for presurgical grading of neuroepithelial brain tumors. METHODS: Using a database of tumor spectra obtained in patients with histologically confirmed diagnoses, 94 consecutive untreated patients were studied using single-voxel 1H spectroscopy (point-resolved spectroscopy; TE 135 msec, TE 135 msec, TR 1500 msec). A total of 90 tumor spectra obtained in patients with diagnostic 1H MR spectroscopy examinations were analyzed using commercially available software (MRUI/VARPRO) and classified using linear discriminant analysis as World Health Organization (WHO) Grade I/II, WHO Grade III, or WHO Grade IV lesions. In all cases, the classification results were matched with histopathological diagnoses that were made according to the WHO classification criteria after serial stereotactic biopsy procedures or open surgery. Histopathological studies revealed 30 Grade I/II tumors, 29 Grade III tumors, and 31 Grade IV tumors. The reliability of the histological diagnoses was validated considering a minimum postsurgical follow-up period of 12 months (range 12-37 months). Classifications based on spectroscopic data yielded 31 tumors in Grade I/II, 32 in Grade III, and 27 in Grade IV. Incorrect classifications included two Grade II tumors, one of which was identified as Grade III and one as Grade IV; two Grade III tumors identified as Grade II; two Grade III lesions identified as Grade IV; and six Grade IV tumors identified as Grade III. Furthermore, one glioblastoma (WHO Grade IV) was classified as WHO Grade I/II. This represents an overall success rate of 86%, and a 95% success rate in differentiating low-grade from high-grade tumors. CONCLUSIONS: The authors conclude that in vivo 1H MR spectroscopy is a reliable technique for grading neuroepithelial brain tumors.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.