144 resultados para Osmosis
Resumo:
The objective of this project is to design a new desalination system with energy efficiency approaching the theoretical thermodynamic limit—even at high recovery ratio. The system uses reverse osmosis (RO) and a batch principle of operation to overcome the problem of concentration factor which prevents continuous-flow RO systems from ever reaching this limit and thus achieving the minimum possible specific energy consumption, SEC. Batch operation comprises a cycle in three phases: pressurisation, purge, and refill. Energy recovery is inherent to the design. Unlike in closed-circuit desalination (CCD), no feedwater is added to the pressure circuit during the pressurisation phase. The batch configuration is compared to standard configurations such as continuous single-stage RO (with energy recovery) and CCD. Theoretical analysis has shown that the new system is able to use 33% less energy than CCD at a recovery ratio of 80%. A prototype has been constructed using readily available parts and tested with feedwater salinities and recovery ratios ranging from 2,000 to 5,000 ppm and 17.2–70.6%, respectively. Results compare very well against the standard configurations. For example, with feedwater containing 5,000 ppm NaCl and recovery ratio of 69%, a hydraulic SEC of 0.31 kWh/m3 was obtained—better than the minimum theoretically possible with a single-stage continuous flow system with energy recovery device.
Resumo:
In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.
Resumo:
As previsões mais recentes, e em relação à “crise” da água, apontam para que até ao ano de 2025 quase dois terços da humanidade possa vir a sofrer com a escassez de água potável, afetando praticamente todos os países do mundo, incluindo os países desenvolvidos, a menos que haja uma redução da procura e/ou o desenvolvimento de novas fontes de água potável. Face ao atual panorama mundial de escassez de água potável, devido às alterações climáticas, deficiente gestão e exploração dos recursos hídricos e crescente procura de água para a agricultura, consumo doméstico e industrial, a dessalinização da água do mar apresenta-se como uma solução segura e confiável para fazer face a este problema. Nesta dissertação são descritas as várias técnicas de dessalinização da água do mar em uso corrente, assim como as novas tecnologias e aplicações futuras. De todas as técnicas, a Reverse Osmosis (RO) foi tratada com mais detalhe neste estudo, por ser das técnicas mais utilizadas em todo mundo e porque é a mais promissora em termos de custo/benefício, mesmo em regiões onde antes a sua aplicação era impensável. Esta dissertação foca aspetos importantes relacionados com o processo da dessalinização, nomeadamente, os impactes ambientais e relação custo/benefício associados ao processo, e as perspetivas futuras. Finalmente procedeu-se a uma análise do processo de dessalinização aplicado à situação de Cabo Verde, onde os recursos hídricos de água potável são escassos, e a dessalinização apresenta-se como a principal fonte de água potável para abastecimento público.
Resumo:
Over the past ten years in Italy, Spain and France, the demographic pressure and the increasing women’s participation in labour market have fuelled the expansion of the private provision of domestic and care services. In order to ensure the difficult balance between affordability, quality and job creation, each countries’ response has been different. France has developed policies to sustain the demand side introducing instruments such as vouchers and fiscal schemes, since the mid of the 2000s. Massive public funding has contributed to foster a regular market of domestic and care services and France is often presented as a “best practices” of those policies aimed at encouraging a regular private sector. Conversely in Italy and Spain, the development of a private domestic and care market has been mostly uncontrolled and without a coherent institutional design: the osmosis between a large informal market and the regular private care sector has been ensured on the supply side by migrant workers’ regularizations or the introduction of new employment regulations . The analysis presented in this paper aims to describe the response of these different policies to the challenges imposed by the current economic crisis. In dealing with the retrenchment of public expenditure and the reduced households’ purchasing power, Italy, Spain and France are experiencing greater difficulties in ensuring a regular private sector of domestic and care services. In light of that, the paper analyses the recent economic conjuncture presenting some assumptions about the future risk of deeper inequalities rising along with the increase of the process of marketization of domestic and care services in all the countries under analysis.
Resumo:
The new engine plant by General Motors (GM) in Joinville-SC, inaugurated on February 27th 2013, incorporates the most advanced automotive technology processes and broad compliance with environmental standards and energy efficiency. The initiatives implemented in this industrial plant include processes with 100% of recycled industrial waste (landfill free) and pioneer systems in energy efficiency and environmental protection, qualifying the plant to obtain the global certification of Leadership in Energy and Environmental Design (LEED). This industrial project reveals the strategic importance of the region and of Brazil in the growth of GM in the world, becoming a reference for studies and project evaluations of "green" factories in the automotive sector. The present study performs an exploratory research based on scientific publications, assessing the direct and indirect impacts on the business outcome, resulting from implementation of industrial serviceoriented sustainability of its operations, referred to in this article as "Green Factory”. We concluded that the adopted technologies focused on sustainability, study and development, represent a new step for the design of new plants and future expansions of the company in the region, combining low operating cost, low environmental impact and conservation of natural resources.
Resumo:
This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese.
Resumo:
Tese submetida à Universidade de Lisboa, Instituto Superior Técnico e aprovada em provas públicas para a obtenção do Grau de Doutor em Sistemas Sustentáveis de Energia.
Resumo:
An initial laboratory-scale evaluation of separation characteristics of membranes with nominal molecular weight cut-offs (NMWCO) ranging from 30 kD down to 0.5 kD indicated effective separation of betalains in the 0.5 kD region. Subsequent pilot-level trials using 1 kD, loose reverse osmosis (LRO) and reverse osmosis (RO) spiral-wound membranes showed LRO membrane to be very efficient with up to 96% salt and 47% other dissolved solids removed while retaining majority of the pigment (∼98%) in the betalain rich extract (BRE). The total betalain content in the BRE increased up to 46%, the highest recovery reported so far at pilot scale level. Interestingly, more than 95% of the nitrates were removed from the BRE after the three diafiltrations. These studies indicate that membrane technology is the most efficient technique to produce BRE with highly reduced amounts of salts and nitrate content.
Resumo:
Salinity gradient power (SGP) is the energy that can be obtained from the mixing entropy of two solutions with a different salt concentration. River estuary, as a place for mixing salt water and fresh water, has a huge potential of this renewable energy. In this study, this potential in the estuaries of rivers leading to the Persian Gulf and the factors affecting it are analysis and assessment. Since most of the full water rivers are in the Asia, this continent with the potential power of 338GW is a second major source of energy from the salinity gradient power in the world (Wetsus institute, 2009). Persian Gulf, with the proper salinity gradient in its river estuaries, has Particular importance for extraction of this energy. Considering the total river flow into the Persian Gulf, which is approximately equal to 3486 m3/s, the amount of theoretical extractable power from salinity gradient in this region is 5.2GW. Iran, with its numerous rivers along the coast of the Persian Gulf, has a great share of this energy source. For example, with study calculations done on data from three hydrometery stations located on the Arvand River, Khorramshahr Station with releasing 1.91M/ energy which is obtained by combining 1.26m3 river water with 0.74 m3 sea water, is devoted to itself extracting the maximum amount of extractable energy. Considering the average of annual discharge of Arvand River in Khorramshahr hydrometery station, the amount of theoretical extractable power is 955 MW. Another part of parameters that are studied in this research, are the intrusion length of salt water and its flushing time in the estuary that have a significant influence on the salinity gradient power. According to the calculation done in conditions HWS and the average discharge of rivers, the maximum of salinity intrusion length in to the estuary of the river by 41km is related to Arvand River and the lowest with 8km is for Helle River. Also the highest rate of salt water flushing time in the estuary with 9.8 days is related to the Arvand River and the lowest with 3.3 days is for Helle River. Influence of these two parameters on reduces the amount of extractable energy from salinity gradient power as well as can be seen in the estuaries of the rivers studied. For example, at the estuary of the Arvand River in the interval 8.9 days, salinity gradient power decreases 9.2%. But another part of this research focuses on the design of a suitable system for extracting electrical energy from the salinity gradient. So far, five methods have been proposed to convert this energy to electricity that among them, reverse electro-dialysis (RED) method and pressure-retarded osmosis (PRO) method have special importance in practical terms. In theory both techniques generate the same amount of energy from given volumes of sea and river water with specified salinity; in practice the RED technique seems to be more attractive for power generation using sea water and river water. Because it is less necessity of salinity gradient to PRO method. In addition to this, in RED method, it does not need to use turbine to change energy and the electricity generation is started when two solutions are mixed. In this research, the power density and the efficiency of generated energy was assessment by designing a physical method. The physical designed model is an unicellular reverse electro-dialysis battery with nano heterogenic membrane has 20cmx20cm dimension, which produced power density 0.58 W/m2 by using river water (1 g NaCl/lit) and sea water (30 g NaCl/lit) in laboratorial condition. This value was obtained because of nano method used on the membrane of this system and suitable design of the cell which led to increase the yield of the system efficiency 11% more than non nano ones.