962 resultados para Optical and electrochemical properties
Resumo:
The resistance to photodegradation of poly [(2-methoxy-5-n-hexyloxy)-p-phenylene vinylene] (OC1OC6-PPV) films was significantly enhanced by the use of poly(vinyl alcohol) 99% hydrolyzed as protective coating. The deposition of poly(vinyl alcohol) onto OC1OC6-PPV films did not affect the absorption and the emission spectra of the luminescent polymer. The protected film showed 5% drop on the absorbance at 500nm after 270 hours of light exposure while the unprotected film completely degraded in the same conditions. The conductivity of the protected film remained stable (around 7 × 10-10 S/m) while the value for the unprotected one dropped around two orders of magnitude after 100 hours of light exposure.
Resumo:
In this thesis mainly two alternating indenofluorene-phenanthrene copolymers were investigated with a variety of spectroscopic and optoelectronic experiments. The different experimental techniques allowed to retrieve deeper insights into their unique optical as well as optoelectronic properties. The motivation of the research presented in this work was to correlate their photophysical properties with respect to their application in electrically pumped lasing. This thesis begins with the description of optical properties studied by classical absorption and emission spectroscopy and successively describes an overall picture regarding their excited state dynamics occurring after photoexcitation studied by time-resolved spectroscopy. The different spectroscopic methods do not only allow to elucidate the different optical transitions occurring in this class of materials, but also contribute to a better understanding of exciton dynamics and exciton interaction with respect to the molecular structure as well as aggregation and photooxidation of the polymers. Furthermore, the stimulated emission properties were analyzed by amplified spontaneous emission (ASE) experiments. Especially one of the investigated materials, called BLUE-1, showed outstanding optical properties including a high optical gain, a low threshold for ASE and low optical losses. Apart from the optical experiments, the charge carrier mobility was measured with the time-of-flight technique and a comparably high hole mobility on the order of 1 x 10-² cm²/(Vs) was determined for BLUE-1 which makes this material promising for organic lasing. The impact of the high charge carrier mobility in this material class was further analyzed in different optoelectronic devices such as organic LEDs (OLEDs) and organic solar cells.
Resumo:
The scintillation and luminescence properties of pure CsBa2I5 and CsBa2I5 doped with 0.5% Eu and 5% Eu were studied between 78 K and 600 K. Single crystals were grown by the vertical Bridgman method from the melt. CsBa2I5:5% Eu showed a light yield of 80,000 photons/MeV, an energy resolution of 2.3% for the 662 key full absorption peak, and an excellent proportional response. Two broad emission bands centered at 400 nm and 600 nm were observed in the radioluminescence spectrum of pure CsBa2I5. The Eu2+ 5d-4f emission band was observed at 430 nm. The radiative lifetime of the Eu2+ excited state was determined as 350 ns. With increasing temperature and Eu concentration the Eu2+ emission shifts to longer wavelengths and its decay time lengthens as a result of self-absorption of the Eu2+ emission. Multiple thermoluminescence glow peaks and a sharp decrease of the light yield at temperatures below 200 K were observed and related to the presence of the charge carrier traps in CsBa2I5:Eu.
Resumo:
Molecular beam epitaxy growth of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs) with peak reflectivity centered around 400nm is reported including optical and transmission electron microscopy (TEM) measurements [1]. Good periodicity heterostructures with crack-free surfaces were confirmed, but, also a significant residual optical absorption below the bandgap was measured. The TEM characterization ascribes the origin of this problem to polymorfism and planar defects in the GaN layers and to the existence of an In-rich layer at the InAlN/GaN interfaces. In this work, several TEM based techniques have been combined.
Resumo:
This paper reports on a case study of the impact of fabrication steps on InN material properties. We discuss the influence of annealing time and sequence of device processing steps. Photoluminescence (PL), surface morphology and electrical transport (electrical resistivity and low frequency noise) properties have been studied as responses to the adopted fabrication steps. Surface morphology has a strong correlation with annealing times, while sequences of fabrication steps do not appear to be influential. In contrast, the optical and electrical properties demonstrate correlation with both etching and thermal annealing. For all the studied samples PL peaks were in the vicinity of 0.7 eV, but the intensity and full width at half maximum (FWHM) demonstrate a dependence on the technological steps followed. Sheet resistance and electrical resistivity seem to be lower in the case of high defect introduction due to both etching and thermal treatments. The same effect is revealed through 1/f noise level measurements. A reduction of electrical resistivity is connected to an increase in 1/f noise level.
Resumo:
A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.
Resumo:
Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Layered lithium-vanadium oxide with a composition of LixVyO2 (x = 0.86 and y = 0.8) was prepared by the hydrothermal reaction of V2O3 with LiOH center dot H2O at 180 degrees C. This material corresponds to a layered rhombohedral structure related to alpha-NaFeO2 in which the vanadium ions are disordered in alternate layers of octahedral 3a (0, 0, 0) and 3b (0, 0, 1/2) sites. The electrochemical properties of this Li0.86V0.8O2 material were investigated and compared with those of the layered Li0.96VO2 made by the conventional solid-state reaction. It was found that the electrochemical capacity and reversibility of the Li0.86V0.8O2 material are significantly improved compared to those of the Li0.96VO2 material; the reversible specific capacities of the Li/Li0.86V0.8O2 and Li/Li0.96VO2 systems are similar to 100 and similar to 50 mAh g(-1), respectively, under the current densities of 7.14 mA g(-1) over 20 charge-discharge cycles with a potential window of 1.50-4.50 V. Such a reversibility results from the structural stability of Li0.86V0.8O2, whereas the increase in the reversible specific capacity can be qualitatively interpreted in terms of the presence of vanadium vacancies in the structure. (c) 2005 The Electrochemical Society.