794 resultados para Observation of teaching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we have reported the synthesis of dahlia flower-like ZnO nanostructures consisting of human finger-like nanorods by the hydrothermal method at 120 degrees C and without using any capping agent. Optical properties of the samples, including UV-vis absorption and photoluminescence (PL) emission characteristics are determined by dispersing the samples in water as well as in ethanol media. The quenching of PL emission intensity along-with the red shifting of the PL emission peak are observed when the samples are dispersed in water in comparison to those obtained after dispersing the samples in ethanol. It has been found that PL emission characteristic, particularly the spectral nature of PL emission, of the samples remains almost unaltered (except some improvement in UV PL emission) even after thermally annealing it for 2 h at the temperature of 300 degrees C. Also the synthesized powder samples, kept in a plastic container, showed a very stable PL emission even after 15 months of synthesis. Therefore, the synthesized samples might be useful for their applications in future optoelectronics devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observe coherent population trapping (CPT) in a two-electron atom-Yb-174-using the S-1(0), F= 0 -> P-3(1), F `= 1 transition. CPT is not possible for such a transition according to one-electron theory because the magnetic sublevels form a V-type system, but in a two-electron atom like Yb, the interaction of the electrons transforms the level structure into a V-type system, which allows the formation of a dark state and hence the observation of CPT. Since the two levels involved are degenerate, we use a magnetic field to lift the degeneracy. The single fluorescence dip then splits into five dips-the central unshifted one corresponds to coherent population oscillation, while the outer four are due to CPT. The linewidth of the CPT resonance is about 300 kHz and is limited by the natural linewidth of the excited state, which is to be expected because the excited state is involved in the formation of the dark state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm(2), however the kinetics remain rather different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR3) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (mu s). Interestingly, TR3 spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ assigned to n pi* and pi pi* of which the pi pi* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (similar to 2 ns) between the T-2(1(3)n pi*) and T-1(1(3)pi pi*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents J. Chem. Phys. 2015, 142, 24305] suggest that the lowest n pi* and pi pi* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin-orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin-and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin-orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the phase transformations in Portland cement before and after hydration. The hydration mechanism was studied in detail by using a full Rietveld refinement of the X-ray diffraction (XRD) patterns, Fourier Transformed Infra-Red (FTIR) spectroscopy, Thermogravimetric Analysis (TGA) and Mossbauer spectroscopy at room temperature. From the Rietveld refinement of XRD data, alite, belite, celite, brown-millerite and low quartz phases were detected and quantified as major phases in dry cement powder. After hydration, calcium carbonate, portlandite and ettringite phases were found to form. A large reduction in the amounts of alite and belite phases were observed suggesting the formation of amorphous C-S-H phase and emphasizing the role of alite phase in flash setting of cement, as justified by the XRD and FTIR spectroscopy. Mossbauer spectra of all the unset samples showed quadrupole split doublets corresponding to the brownmillerite phase which remains unchanged even after about one week of hydration, suggesting that brownmillerite did not transform to other phases during initial stage of hydration process. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores an on-line experimental method to highlight the process of internal damage development in composites by taking advantage of ultrasonic inspection. A loading device, which can work together with an ultrasonic inspection system, was designed, and the interlaminar shear damage of a double-sided grooved specimen of composite was examined on-line with the system. A full view of the progressive internal interlaminar damage, seen only with difficulty by common inspection methods, was successfully achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular ordering of coronene (C24H12) obtained by vacuum-deposition onto predominantly Ag(111) on mica has been investigated using the scanning tunnelling microscope. Real-space topographic images reveal that in certain regions we obtain layer-by-layer ordered growth of the molecules on this substrate which agrees with previous indirect measurements (the growth did not display this ordering in other regions). In our experiments on the ordered regions, we observe the best imaging contrast at a voltage bias of -0.28 V which may correspond to a resonant tunnelling process through the molecules. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure liquid - liquid diffusion driven by concentration gradients is hard to study in a normal gravity environment since convection and sedimentation also contribute to the mass transfer process. We employ a Mach - Zehnder interferometer to monitor the mass transfer process of a water droplet in EAFP protein solution under microgravity condition provided by the Satellite Shi Jian No 8. A series of the evolution charts of mass distribution during the diffusion process of the liquid droplet are presented and the relevant diffusion coefficient is determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydimethylsiloxane ( PDMS) has become the most widely used silicon-based organic polymer in bio-MEMS/NEMS devices. However, the inherent hydrophobic nature of PDMS hinders its wide applications in bio-MEMS/NEMS for efficient transport of liquids. Electrowetting is a useful tool to reduce the apparent contact angle of partially wetting conductive liquids and has been utilized widely in bio-MEMS/NEMS. Our experimental results show that the thin PDMS membranes exhibit good properties in electrowetting-on-dielectric. The electrical instability phenomenon of droplets was observed in our experiment. The sessile droplet lying on the PDMS membrane will lose its stability with the touch of the wire electrode to make the apparent contact angle change suddenly larger than 35 degrees. Contact mode can protect the dielectric layer from electrical breakdown effectively. Electrical breakdown process of dielectric layer was recorded by a high speed camera. It is found experimentally that a PDMS membrane of 4.8 mu m thick will not be destroyed due to the electric breakdown even at 800 V in the contact mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon- nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimentally observed, results are presented for the DCarcplasmajets and theirarc-rootbehaviors generated atreduced gas pressure and without or with an' applied magnetic field. Pure argon, argon -hydrogen or argon-nitrogen mixture is used as the plasma-forming gas. A specially designed copper mirror is constructed and used for better observing the arc-root behavior on the anode surface of the DC non-transferred arcplasma torch. It is shown that for the cases without applied magnetic field, the laminar plasmajets are stable and approximately axisymmetrical. The arc-root attachment on the anode surface is completely diffusive when argon is used as the plasma-forming gas, while the arc-root attachment often becomes constrictive when hydrogen or nitrogen is added into the argon. When an external magnetic field is applied, the arcroot tends to rotate along the anode surface of the non-transferred arcplasma torch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case study on how Reading College is taking a holistic approach to developing their digital strategy, focusing on good practice in teaching and learning and extending learning beyond the classroom walls.