913 resultados para Non-dependent parties
Resumo:
Software packages NUPARM and NUCGEN, are described, which can be used to understand sequence directed structural variations in nucleic acids, by analysis and generation of non-uniform structures. A set of local inter basepair parameters (viz. tilt, roll, twist, shift, slide and rise) have been defined, which use geometry and coordinates of two successive basepairs only and can be used to generate polymeric structures with varying geometries for each of the 16 possible dinucleotide steps. Intra basepair parameters, propeller, buckle, opening and the C6...C8 distance can also be varied, if required, while the sugar phosphate backbone atoms are fixed in some standard conformation ill each of the nucleotides. NUPARM can be used to analyse both DNA and RNA structures, with single as well as double stranded helices. The NUCGEN software generates double helical models with the backbone fixed in B-form DNA, but with appropriate modifications in the input data, it can also generate A-form DNA ar rd RNA duplex structures.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
The detailed molecular mechanisms underlying the regulation of sleep duration in mammals are still elusive. To address this challenge, we constructed a simple computational model, which recapitulates the electrophysiological characteristics of the slow-wave sleep and awake states. Comprehensive bifurcation analysis predicted that a Ca2+-dependent hyperpolarization pathway may play a role in slow-wave sleep and hence in the regulation of sleep duration. To experimentally validate the prediction, we generate and analyze 21 KO mice. Here we found that impaired Ca2+-dependent K+ channels (Kcnn2 and Kcnn3), voltage-gated Ca2+ channels (Cacna1g and Cacna1h), or Ca2+/calmodulin-dependent kinases (Camk2a and Camk2b) decrease sleep duration, while impaired plasma membrane Ca2+ ATPase (Atp2b3) increases sleep duration. Pharmacological intervention and whole-brain imaging validated that impaired NMDA receptors reduce sleep duration and directly increase the excitability of cells. Based on these results, we propose a hypothesis that a Ca2+-dependent hyperpolarization pathway underlies the regulation of sleep duration in mammals.
Resumo:
This article intends to cover two aspects of non-segmented negative sense RNA viruses. In the initial section, the strategy employed by these viruses to replicate their genomes is discussed. This would help in understanding the later section in which the use of these viruses as vaccine vectors has been discussed. For the description of the replication strategy which encompasses virus genome transcription and genome replication carried out by the same RNA dependent RNA polymerase complex, a member of the prototype rhabdovirus family - Chandipura virus has been chosen as an example to illustrate the complex nature of the two processes and their regulation. In the discussion on these viruses serving as vectors for carrying vaccine antigen genes, emphasis has been laid on describing the progress made in using the attenuated viruses as vectors and a description of the systems in which the efficiency of immune responses has been tested.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
This paper studies:(i)the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction;and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.
Resumo:
Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.
Resumo:
This study focuses on the temperature dependent optical band gap changes in the amorphous Ge2Sb2Te5 (GST) films. The behavior of the amorphous GST thin films at low temperatures has been studied. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature (300 K). The band gap changes associated with the temperature are completely reversible. The other optical parameters like Urbach energy and Tauc parameter (B-1/2) are studied for different temperatures and discussed. The observed changes in optical band gap (E-g) are fitting to Fan's one phonon approximation. Phonon energy ((h) over bar omega) corresponding to a frequency of 3.59 THz is derived from Fan's approximation, which is close to the reported value of 3.66 THz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A microscopic study of the non‐Markovian (or memory) effects on the collective orientational relaxation in a dense dipolar liquid is carried out by using an extended hydrodynamic approach which provides a reliable description of the dynamical processes occuring at the molecular length scales. Detailed calculations of the wave‐vector dependent orientational correlation functions are presented. The memory effects are found to play an important role; the non‐Markovian results differ considerably from that of the Markovian theory. In particular, a slow long‐time decay of the longitudinal orientational correlation function is observed for dense liquids which becomes weaker in the presence of a sizeable translational contribution to the collective orientational relaxation. This slow decay can be attributed to the intermolecular correlations at the molecular length scales. The longitudinal component of the orientational correlation function becomes oscillatory in the underdamped limit of momenta relaxations and the frequency dependence of the friction reduce the frictional resistance on the collective excitations (commonly known as dipolarons) to make them long lived. The theory predicts that these dipolarons can, therefore, be important in chemical relaxation processes, in contradiction to the claims of some earlier theoretical studies.
Resumo:
A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.
Resumo:
The static structure factor of the dilute sterically stabilised lamellar phase is calculated and found to have an Ornstein-Zernike form with a correlation length that diverges at infinite dilution. The relaxation time for concentration fluctuations at large wave number q is shown to go as q-3 with a coefficient independent of the membrane bending rigidity. The membrane fluctuations also give rise to strongly frequency-dependent viscosities at high frequencies.
Resumo:
Electron transfer reactions between donor-acceptor pairs in solution and in organized media exhibit diverse behaviour. Recent experiments have indicated an interesting breakdown of the Marcus parabolic energy gap dependence in the normal regime for back electron transfer from contact ion pairs. A novel explanation of this breakdown has recently been proposed (M. Tachiya and S. Murata, J. Am. Chem. Sec., 116(1994) 2434) which attributes the breakdown to the interplay between the relaxation in the reactant well and the reaction. A particularly interesting aspect of the model is that it envisages the electron transfer in the normal regime to take place from a completely non-equilibrium condition. In this article a time dependent solution of the model is presented for the first time, after generalizing it to include a realistic initial population distribution. The decay of the contact ion pair population is completely non-exponential. This can be used to check the validity of the Tachiya-Murata model. The dynamics of electron transfer from the solvent separated ion pair, which seem to obey the Marcus relation, is exponential.
Resumo:
The growth and dissolution dynamics of nonequilibrium crystal size distributions (CSDs) can be determined by solving the governing population balance equations (PBEs) representing reversible addition or dissociation. New PBEs are considered that intrinsically incorporate growth dispersion and yield complete CSDs. We present two approaches to solving the PBEs, a moment method and a numerical scheme. The results of the numerical scheme agree with the moment technique, which can be solved exactly when powers on mass-dependent growth and dissolution rate coefficients are either zero or one. The numerical scheme is more general and can be applied when the powers of the rate coefficients are non-integers or greater than unity. The influence of the size dependent rates on the time variation of the CSDs indicates that as equilibrium is approached, the CSDs become narrow when the exponent on the growth rate is less than the exponent on the dissolution rate. If the exponent on the growth rate is greater than the exponent on the dissolution rate, then the polydispersity continues to broaden. The computation method applies for crystals large enough that interfacial stability issues, such as ripening, can be neglected. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Here we report a temperature-dependent Raman study of the pyrochlore ``dynamic spin-ice'' compound Pr(2)Sn(2)O(7) and compare the results with its non-pyrochlore (monoclinic) counterpart Pr(2)Ti(2)O(7). In addition to phonon modes, we observe two bands associated with electronic Raman scattering involving crystal field transitions in Pr(2)Sn(2)O(7) at similar to 135 and 460 cm(-1) which couple strongly to phonons. Anomalous temperature dependence of phonon frequencies that are observed in Pyrochlore Pr(2)Sn(2)O(7) are absent in monoclinic Pr(2)Ti(2)O(7). This, therefore, confirms that the strong phonon-phonon anharmonic interactions, responsible for the temperature-dependent anomalous behavior of phonons, arise due to the inherent vacant sites in the pyrochlore structure. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We have studied the magnetic field dependent rf (20 MHz) losses in Bi2Sr2CaCu2O8 single crystals in the low field and high temperature regime. Above HCl the dissipation begins to decrease as the field is increased and exhibits a minimum at HM>HCl. For H>HM the loss increases monotonically. We attribute the decrease in loss above HCl to the stiffening of the vortex lines due to the attractive electromagnetic interaction between the 2D vortices (that comprise the vortex line at low fields) in adjacent CuO bilayers. The minimum at HM implies that the vortex lines are stiffest and hence represents a transition into vortex solid state from the narrow vortex liquid in the vicinity of HCl. The increase in loss for H>HM marks the melting of the vortex lattice and hence a second transition into vortex liquid regime. We discuss our results in the light of recent theory of reentrant melting of the vortex lattice by G. Blatter et al. (Phys. Rev. B 54, 72 (1996)).