972 resultados para NONLINEAR BOUNDARY-CONDITIONS
Resumo:
The conventional convection-dispersion model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. The extension of this model to include nonlinear kinetics and zonal heterogeneity of the liver is not straightforward and requires numerical solution of partial differential equation, which is not available in standard nonlinear regression analysis software. In this paper, we describe an alternative compartmental model representation of hepatic disposition (including elimination). The model allows the use of standard software for data analysis and accurately describes the outflow concentration-time profile for a vascular marker after bolus injection into the liver. In an evaluation of a number of different compartmental models, the most accurate model required eight vascular compartments, two of them with back mixing. In addition, the model includes two adjacent secondary vascular compartments to describe the tail section of the concentration-time profile for a reference marker. The model has the added flexibility of being easy to modify to model various enzyme distributions and nonlinear elimination. Model predictions of F, MTT, CV2, and concentration-time profile as well as parameter estimates for experimental data of an eliminated solute (palmitate) are comparable to those for the extended convection-dispersion model.
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Resumo:
Undesirable void formation during the injection phase of the liquid composite molding process can be understood as a consequence of the non-uniformity of the flow front progression, caused by the dual porosity of the fiber perform. Therefore the best examination of the void formation physics can be provided by a mesolevel analysis, where the characteristic dimension is given by the fiber tow diameter. In mesolevel analysis, liquid impregnation along two different scales; inside fiber tows and within the spaces between them; must be considered and the coupling between these flow regimes must be addressed. In such case, it is extremely important to account correctly for the surface tension effects, which can be modeled as capillary pressure applied at the flow front. When continues Galerkin method is used, exploiting elements with velocity components and pressure as nodal variables, strong numerical implementation of such boundary conditions leads to ill-posing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. This article presents a numerical procedure, which was formulated and implemented in the existing Free Boundary Program in order to significantly reduce this error.
Resumo:
Undesirable void formation during the injection phase of the liquid composite moulding process can be understood as a consequence of the non-uniformity of the flow front progression, caused by the dual porosity of the fibre perform. Therefore the best examination of the void formation physics can be provided by a mesolevel analysis, where the characteristic dimension is given by the fibre tow diameter. In mesolevel analysis, liquid impregnation along two different scales; inside fibre tows and within the open spaces between them; must be considered and the coupling between these flow regimes must be addressed. In such case, it is extremely important to account correctly for the surface tension effects, which can be modelled as capillary pressure applied at the flow front. Numerical implementation of such boundary conditions leads to ill-posing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. This contribution presents a numerical procedure, which was formulated and implemented in the existing Free Boundary Program in order to significantly reduce this error.
Resumo:
The fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology proposed in this work and to explain the diffusion process in fractally fractured systems.
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática
Resumo:
Recent durability studies have shown the susceptibility of bond in fiber-reinforced polymer (FRP) strengthened masonry components to hygrothermal exposures. However, it is not clear how this local material degradation affects the global behavior of FRP-strengthened masonry structures. This study addresses this issue by numerically investigating the nonlinear behavior of FRP-masonry walls after aging in two different environmental conditions. A numerical modeling strategy is adopted and validated with existing experimental tests on FRP-strengthened masonry panels. The model, once validated, is used for modeling of four hypothetical FRP-strengthened masonry walls with different boundary conditions, strengthening schemes, and reinforcement ratios. The nonlinear behavior of the walls is then simulated before and after aging in two different environmental conditions. The degradation data are taken from previous accelerated aging tests. The changes in the failure mode and nonlinear response of the walls after aging are presented and discussed.
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.
Resumo:
Tässä diplomityössä tutkitaan epälineaarisen teorian hyödyntämistä laattarakenteiden analysoinnissa ja pyritään muodostamaan yksinkertaisia mitoitusohjeita laattarakenteille. Analysointia varten laattarakenne jaetaan lohkoihin, joille mitoitussäännöt määritetään. Tarkastellaan myös lineaarisen ja epälineaarisen teorian antamien tulosten eroavai-suutta ja suurten taipumien huomioimisen aiheuttamaa hyötyä. Työn lähtökohtana on standardi SFS-EN 1993-1-7, joka antaa yksinkertaistettuja mitoitusohjeita laattarakenteiden mitoitukseen lineaarisella ja epälineaarisella teorialla. Työssä selvitetään mistä nämä mitoitusohjeet ovat peräisin. Lisäksi tarkastellaan laattalohkojen erilaisia liitoksia, jotta voidaan tehdä oletuksia laatan reunaehdoista. Tulokseksi saadaan suuntaa-antavia mitoitusohjeita, joiden soveltaminen onnistuu vain muutamille yksinkertaisille rakenteille. Mitoitusohjeiden perusteella saadaan laskettua laattalohkon jännitykset, taipuma sekä mitoitusohjeiden vaatiman jäykisteen koko. Jotta mitoitusohjeista saataisiin tarkemmat, tulisi mitoitettava rakenne pystyä määrittelemään yksityiskohtaisemmin. Vertailtaessa lineaarista ja epälineaarista laskentaa havaitaan, että huomioimalla suurten taipumien aikaansaamat kalvovoimat, laskevat laattarakenteeseen vaikuttavat taipumat ja jännitykset merkittävästikin.
Resumo:
Tämän diplomityön tavoitteena oli suunnitella miehistönkuljetusajoneuvon runko. Rungosta suunniteltiin mahdollisimman hyvin energiaa absorboiva. Rakenne toteutettiin kennora-kenteena. Suunnittelussa sovellettiin koneensuunnittelun periaatteiden lisäksi energiaa ab-sorboivien rakenteiden suunnittelun periaatteita. Myös valmistustekniset näkökohdat otet-tiin huomioon. Rakenteessa hyödynnettiin Ruukki Oy:n Ramor 500 suojausterästä sekä OPTIM 500 MC terästä. Lisäksi erilaisten täyteaineiden käyttöä tutkittiin. Suunnittelun työkaluna käytettiin epälineaarista elementtimenetelmää, koska energiaa ab-sorboivien rakenteiden suunnittelussa on otettava huomioon materiaalien epälineaarinen käyttäytyminen. Rakenteen suunnittelu jakaantui viiteen vaiheeseen. Aluksi rakenteeseen kohdistuvat kuormitukset laskettiin elementtimenetelmän avulla. Esisuunnittelussa lasket-tiin plastisuusteorian avulla alustavasti tarvittavat materiaalipaksuudet. Tämän jälkeen ra-kenteen ydingeometria optimoitiin mahdollisimman hyvin energiaa absorboivaksi. Opti-moinnissa hyödynnettiin elementtimenetelmää. Seuraavassa vaiheessa varmistettiin raken-teen globaalit ominaisuudet. Lopuksi rakenteen kestävyyttä tarkasteltiin elementtimene-telmällä. Runko ei mallien mukaan kestänyt siltä vaadittuja kuormitustapauksia. Mallin kaikki ole-tukset pidettiin varmalla puolella. Reunaehdot oletettiin todellisuutta jäykemmiksi. Myös-kään materiaalin venymänopeudesta johtuvaa lujittumista ei otettu huomioon. Koska mii-naräjähdys on monimutkainen tapahtuma, rungon todellinen kestävyys joudutaan ar-viomaan räjähdystesteillä. Elementtimallien perusteella voidaan kuitenkin sanoa, että ener-giaa absorboiva ajoneuvon runko on mahdollista toteuttaa kennorakenteena. Lisäksi voi-daan todeta, että elementtimenetelmää sopii työvälineeksi tämän tyyppisten rakenteiden suunnitteluun.
Resumo:
Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.
Resumo:
Submarine hull structure is a watertight envelope, under hydrostatic pressure when in operation. Stiffened cylindrical shells constitute the major portion of these submarine hulls and these thin shells under compression are susceptible to buckling failure. Normally loss of stability occurs at the limit point rather than at the bifurcation point and the stability analysis has to consider the change in geometry at each load step. Hence geometric nonlinear analysis of the shell forms becomes. a necessity. External hydrostatic pressure will follow the deformed configuration of the shell and hence follower force effect has to be accounted for. Computer codes have been developed based on all-cubic axisymmetric cylindrical shell finite element and discrete ring stiffener element for linear elastic, linear buckling and geometric nonIinear analysis of stiffened cylindrical shells. These analysis programs have the capability to treat hydrostatic pressure as a radial load and as a follower force. Analytical investigations are carried out on two attack submarine cylindrical hull models besides standard benchmark problems. In each case, the analysis has been carried out for interstiffener, interdeepframe and interbulkhead configurations. The shell stiffener attachment in each of this configuration has been represented by the simply supported-simply supported, clamped-clamped and fixed-fixed boundary conditions in this study. The results of the analytical investigations have been discussed and the observations and conclusions are described. Rotation restraint at the ends is influential for interstiffener and interbulkhead configurations and the significance of axial restraint becomes predominant in the interbulkhead configuration. The follower force effect of hydrostatic pressure is not significant in interstiffener and interdeepframe configurations where as it has very high detrimental effect on buckling pressure on interbulkhead configuration. The geometric nonlinear interbulkhead analysis incorporating follower force effect gives the critical value of buckling pressure and this analysis is recommended for the determination of collapse pressure of stiffened cylindrical submarine shells.
Resumo:
The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.