868 resultados para Mutated HOXB4


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronaaliset nikotiinireseptorit liittyvät tupakkariippuvuuden lisäksi moniin neurologisiin sairauksiin, kuten Alzheimerin tautiin, skitsofreniaan, masennukseen ja tarkkaavaisuus- ja ylivilkkaushäiriöön. Nikotiinireseptorien stimulaation on tutkimuksissa havaittu parantavan kognitiota. Useat lääkeyritykset tutkivat nikotiinireseptoriagonisteja ja -antagonisteja eri neurologisten sairauksien hoidossa. Ongelmana nikotiinireseptori-agonisteja käytettäessä on reseptorissa tapahtuva desensitisaatio. Tällöin reseptori sulkeutuu, eikä aktivoidu vaikka agonistia olisi tarjolla tai sitoutuneena reseptoriin. Varsinkin alfa7-reseptori desensitoituu hyvin nopeasti agonistialtistuksen seurauksena. Reseptorien desensitoituminen voi kliinisessä käytössä aiheuttaa lääkeaineen tehon menetyksen. Perinteisen agonistin sitoutumiskohdan lisäksi nikotiinireseptorissa sijaitsee myös muita sitoutumiskohtia, joita kutsutaan allosteerisiksi sitoutumispaikoiksi. Tutkimuksissa on havaittu, että eräät allosteerisesti sitoutuvat aineet, kuten PNU-120596, voivat vahvistaa agonistin aikaansaamaa vastetta ja/tai estää reseptorin desensitoitumista. Näitä aineita kutsutaan positiivisiksi allosteerisiksi modulaattoreiksi ja niiden ajatellaan olevan vaihtoehto desensitoitumisen aiheuttamaan tehon menetyksen ongelmaan. Nikotiinireseptorien positiivisten allosteeristen modulaattorien tarkkaa vaikutusta ja sitoutumiskohtaa reseptoriin ei vielä tarkkaan tiedetä. Tutkimuksen aiheena oli karakterisoida positiivisten allosteeristen modulaattoreiden vaikutuksia alfa7-nikotiinireseptoriin. Tutkimuksessa tarkoituksena oli käyttää hyväksi laboratoriossa aiemmin tehtyä havaintoa, jonka mukaan alfa7-nikotiinireseptorin transmembraaniosan aminohappoon tehdyn mutaation L247T seurauksena positiiviset allosteeriset modulaattorit muuttuvat agonisteiksi. Haluttiin selvittää, kuinka agonistin sitoutumiskohtaan kohdennettua mutageneesiä käyttäen tehty mutaatio W149M tai W149F vaikuttavat PNU-120596:n kykyyn toimia agonistina alfa7L247T reseptoriin. Asetyylikoliini toimi konventionaalisen agonistin mallina tutkimuksessa. Tutkimuksen toinen tavoite oli tehdä mutaatio M253Lalfa7-reseptorin transmembraaniosaan. Mutaation on todettu estävän allosteeristen potentiaattoreiden kykyä voimistaa agonistin aikaansaamaa vastetta. Tarkoitus oli tutkia millaisia vaikutuksia M253L-mutaatiolla on allosteerisen potentiaattorin kykyyn toimia agonistina L247T-mutaation sisältävään reseptoriin. Mutatoidun reseptorin mRNA mikroinjektoitiin oosyyttiin ja elektrofysiologian avulla tutkittiin ilmennettyjen reseptorien toimintaa käyttäen kahden elektrodin jännitelukitus -menetelmää. Kaikki suunnitellut mutaatiot saatiin tehtyä onnistuneesti alfa7- ja alfa7L247T-reseptoreihin. Ortosteerisen sitoutumiskohdan mutaatio villin tyypin Į7-reseptorissa vaikutti hyvin voimakkaasti joko asetyylikoliinin sitoutumiseen reseptoriin tai reseptorin toimintaan, sillä asetyylikoliinilla ei reseptorista saatu mitattua vasteita. Myöskään PNU-120596 yksinään ei saanut aikaan vasteita alfa7W149M-reseptorissa. Kaksoismutatoidussa alfa7W149M/L247T-reseptorissa puolestaan havaittiin, että asetyylikoliinin annos-vaste -kuvaaja siirtyi huomattavasti enemmän oikealle kuin PNU-120596:n, kun verrattiin annos-vaste –kuvaajia alfa7L247T ja alfa7W149M/L247T–reseptoreiden välillä. Transmembraaniosan mutaatio M253L ei vaikuttanut PNU-120596:n kykyyn toimia agonistina alfa7L247T-reseptoriin, eikä sillä ollut vaikutusta asetyylikoliinin annosvaste-kuvaajiin. Tutkimus tukee aiempia havaintoja siitä, että positiivisten allosteeristen modulaattoreiden sitoutumiskohta nikotiinireseptorissa sijaitsisi transmembraaniosassa. M253L-mutaation osalta tulokset ovat hieman ristiriidassa aiempien tulosten kanssa. L247T-mutaatio vaikuttaa hyvin voimakkaasti nikotiinireseptorin toimintaan sekä sijaitsee aminohapon M253 läheisyydessä. On mahdollista, että se peittää M253L-mutaation vaikutuksen. Toisaalta voi olla, että M253 on aminohappo, joka vaikuttaa vain reseptorivasteiden voimistumiseen eikä allosteeristen potentiaattoreiden sitoutumiseen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10 -methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune regulator (AIRE) is the gene mutated in the human polyglandular autoimmune disease called Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED) that belongs to the Finnish disease heritage. Murine Aire has been shown to be important in the generation of the T cell central tolerance in the thymus by promoting the expression of ectopic tissue-specific antigens in the thymic medulla. Aire is also involved in the thymus tissue organization during organogenesis. In addition to the thymus, AIRE/Aire is expressed in the secondary lymphoid organs. Accordingly, a role for AIRE/Aire in the maintenance of peripheral tolerance has been suggested. Peripheral tolerance involves mechanisms that suppress immune responses in secondary lymphoid organs. Regulatory T cells (Tregs) are an important suppressive T cell population mediating the peripheral tolerance. Tregs are generated in the thymus but also in the peripheral immune system T cells can acquire the Treg-phenotype. The aim of this study was to characterize Tregs in APECED patients and in the APECED mouse model (Aire-deficient mice). In the mouse model, it was possible to separate Aire expression in the thymus and in the secondary lymphoid organs. The relative importance of thymic and peripheral Aire expression in the maintenance of immunological tolerance was studied in an experimental model that was strongly biased towards autoimmunity, i.e. lymphopenia-induced proliferation (LIP) of lymphocytes. This experimental model was also utilised to study the behaviour of T cells with dual-specific T cell receptors (TCR) during the proliferation. The Treg phenotype was studied by flow cytometry and relative gene expression with real-time polymerase chain reaction. TCR repertoires of the Tregs isolated from APECED patients and healthy controls were also compared. The dual-specific TCRs were studied with the TCR repertoire analysis that was followed with sequencing of the chosen TCR genes in order to estimate changes in the dual-specific TCR diversity. The Treg function was tested with an in vitro suppression assay. The APECED patients had normal numbers of Tregs but the phenotype and suppressive functions of the Tregs were impaired. In order to separate Aire functions in the thymus from its yet unknown role in the secondary lymphoid organs, the phenomenon of LIP was utilised. In this setting, the lymphocytes that are adoptively transferred to a lymphopenic recipient proliferate to stimuli from self-originating antigens. This proliferation can result in autoimmunity if peripheral tolerance is not fully functional. When lymphocytes that had matured without Aire in the thymus were transferred to lymphopenic Aire-sufficient recipients, no clinical autoimmunity followed. The Aire-deficient donor-originating lymphocytes hyperproliferated, and other signs of immune dysregulation were also found in the recipients. Overt autoimmunity, however, was prevented by the Aire-deficient donor-originating Tregs that hyperproliferated in the recipients. Aire-deficient lymphopenic mice were used to study whether peripheral loss of Aire had an impact on the maintenance of peripheral tolerance. When normal lymphocytes were transferred to these Aire-deficient lymphopenic recipients, the majority of recipients developed a clinically symptomatic colitis. The colitis was confirmed also by histological analysis of the colon tissue sections. In the Aire-deficient lymphopenic recipients Tregs were proliferating significantly less than in the control group s recipients that had normal Aire expression in their secondary lymphoid organs. This study shows that Aire is not only important in the central tolerance but is also has a significant role in the maintenance of the peripheral tolerance both in mice and men. Aire expressed in the secondary lymphoid organs is involved in the functions of Tregs during an immune response. This peripheral expression appears to be relatively more important in some situations since only those lymphopenic recipients that had lost peripheral expression of Aire developed a symptomatic autoimmune disease. This AIRE-related Treg defect could be clinically important in understanding the pathogenesis of APECED.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p53-family consists of three transcription factors, p53, p73 and p63. The family members have similar but also individual functions connected to cell cycle regulation, development and tumorigenesis. p53 and p73 act mainly as tumor suppressors. During DNA damage caused by anticancer drugs or irradiation, p53 and p73 levels are upregulated in cancer cells leading to apoptosis and cell cycle arrest. p53 is mutated in almost 50 per cent of the cancers, causing the cancer cells unable to undergo cell death. Instead, p73 is rarely mutated in cancer cells and because of that could be more viable target for anticancer therapy. The network surrounding the regulation of p73 is extensive and has several potential targets for cancer therapy. One of the most studied is Itch ligase, the negative regulator of p73 levels. Gene therapy directed towards knockdown of Itch ligase is a potential approach but in need for more in vivo proof. p73 has two isoforms, transactivating TA-forms and dominant-negative ΔN-forms. The specific regulation of these isoforms could also offer a possible way for more effective cancer treatment. The literature work includes information of structures, isoforms, functions and possible therapeutic targets of p73. Also the main therapeutic approaches to date are introduced. The experimental part is based on transfection and cytotoxicity studies done e.g. in pancreatic cancer cells (Mia PaCa-2, PANC1, BxPc-3 and HPAC). The aim of the experimental work was to optimize the conditions for effective transfection with DAB16 dendrimer nanoparticles and to measure the cytotoxicity of plain dendrimers and DAB16-pDNA complexes. Also the protein levels of p73 and Itch ligase were measured by Western blotting. The work was done as a part of a bigger project, which was aiming to down regulate Itch ligase (negative regulator of p73) by siRNA/shRNA. Tranfection results were promising, showing good transfection efficacy with DAB16 N/P30 in pancreatic cancer cells (except in BxPc-3). Pancreatic cancer cells showed recovery in 3 days after they were exposed to plain dendrimer solution or to DAB16-pDNA. Measurement of protein levels by Western blotting was not optimal and the proposals for the improvement regarding e.g. the gels and the extracted protein amounts have been done.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mutant of Erythrina corallodendron lectin was generated with the aim of enhancing its affinity for N-acetylgalactosamine. A tyrosine residue close to the binding site of the lectin was mutated to a glycine in order to facilitate stronger interactions between the acetamido group of the sugar and the lectin which were prevented by the side chain of the tyrosine in the wild-type lectin. The crystal structures of this Y106G mutant lectin in complex with galactose and N-acetylgalactosamine have been determined. A structural rationale has been provided for the differences in the relative binding affinities of the wild-type and mutant lectins towards the two sugars based on the structures. A hydrogen bond between the O6 atom of the sugars and the variable loop of the carbohydrate-binding site of the lectin is lost in the mutant complexes owing to a conformational change in the loop. This loss is compensated by an additional hydrogen bond that is formed between the acetamido group of the sugar and the mutant lectin in the complex with N-acetylgalactosamine, resulting in a higher affinity of the mutant lectin for N-acetylgalactosamine compared with that for galactose, in contrast to the almost equal affinity of the wild-type lectin for the two sugars. The structure of a complex of the mutant with a citrate ion bound at the carbohydrate-binding site that was obtained while attempting to crystallize the complexes with sugars is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylate cyclase activating protein-1 (GCAP1) is required for activation of retinal guanylate cyclase-1 (RetGC1), which is essential for recovery of photoreceptor cells to the dark state. In this paper, experimentally derived observations are reported that help in explaining why a proline→leucine mutation at position 50 of human GCAP1 results in cone–rod dystrophy in a family carrying this mutation. The primary amino acid sequence of wild-type GCAP1 was mutated using site-directed mutagenesis to give a leucine at position 50. In addition, serine replaced a glutamic acid residue at position 6 to promote N‐terminal myristoylation, yielding the construct GCAP1 E6S/P50L. The enzyme was over-expressed in Escherichia coli cells, isolated and purified before being used in assays with RetGC1, characterized by circular dichroism (CD) spectroscopy, and investigated for protease resistance and thermal stability. Assays of cyclic guanosine monophosphate (cGMP) synthesis from guanosine triphosphate by RetGC1 in the presence of E6S/P50L showed that E6S/P50L could activate RetGC1 and displayed similar calcium sensitivity to wild-type GCAP1. In addition, E6S/P50L and wild-type GCAP1 possess similar CD spectra. However, there was a marked increase in the susceptibility to protease degradation and also a reduction in the thermal stability of E6S/P50L as observed by both the cGMP assay and CD spectroscopy. It is therefore suggested that although GCAP1 E6S/P50L has a similar activity and calcium dependency profile to the wild-type GCAP1, its lower stability could reduce its cellular concentration, which would in turn alter [Ca2+] and result in death of cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated reservoir operation model is presented for developing effective operational policies for irrigation water management. In arid and semi-arid climates, owing to dynamic changes in the hydroclimatic conditions within a season, the fixed cropping pattern with conventional operating policies, may have considerable impact on the performance of the irrigation system and may affect the economics of the farming community. For optimal allocation of irrigation water in a season, development of effective mathematical models may guide the water managers in proper decision making and consequently help in reducing the adverse effects of water shortage and crop failure problems. This paper presents a multi-objective integrated reservoir operation model for multi-crop irrigation system. To solve the multi-objective model, a recent swarm intelligence technique, namely elitist-mutated multi-objective particle swarm optimisation (EM-MOPSO) has been used and applied to a case study in India. The method evolves effective strategies for irrigation crop planning and operation policies for a reservoir system, and thereby helps farming community in improving crop benefits and water resource usage in the reservoir command area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary microcephaly is an autosomal recessive disorder characterized by smaller than normal brain size and mental retardation. It is genetically heterogeneous with seven loci: MCPH1-MCPH7. We have previously reported genetic analysis of 35 families, including the identification of the MCPH7 gene STIL. Of the 35 families, three families showed linkage to the MCPH2 locus. Recent whole-exome sequencing studies have shown that the WDR62 gene, located in the MCPH2 candidate region, is mutated in patients with severe brain malformations. We therefore sequenced the WDR62 gene in our MCPH2 families and identified two novel homozygous protein truncating mutations in two families. Affected individuals in the two families had pachygyria, microlissencephaly, band heterotopias, gyral thickening, and dysplastic cortex. Using immunofluorescence study, we showed that, as with other MCPH proteins, WDR62 localizes to centrosomes in A549, HepG2, and HaCaT cells. In addition, WDR62 was also localized to nucleoli. Bioinformatics analysis predicted two overlapping nuclear localization signals and multiple WD-40 repeats in WDR62. Two other groups have also recently identified WDR62 mutations in MCPH2 families. Our results therefore add further evidence that WDR62 is the MCPH2 gene. The present findings will be helpful in genetic diagnosis of patients linked to the MCPH2 locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genome of Helicobacter pylori is rich in restrictionmodification (RM) systems. Approximately 4% of the genome codes for components of RM systems. hpyAVIBM, which codes for a phase-variable C5 cytosine methyltransferase (MTase) from H. pylori, lacks a cognate restriction enzyme. Over-expression of M.HpyAVIB in Escherichia coli enhances the rate of mutations. However, when the catalytically inactive F9N or C82W mutants of M.HpyAVIB were expressed in E. coli, mutations were not observed. The M.HpyAVIB gene itself was mutated to give rise to different variants of the MTase. M.HpyAVIB variants were purified and differences in kinetic properties and specificity were observed. Intriguingly, purified MTase variants showed relaxed substrate specificity. Homologues of hpyAVIBM homologues amplified and sequenced from different clinical isolates showed similar variations in sequence. Thus, hpyAVIBM presents an interesting example of allelic variations in H. pylori where changes in the nucleotide sequence result in proteins with new properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer-associated mutations in cancer genes constitute a diverse set of mutations associated with the disease. To gain insight into features of the set, substitution, deletion and insertion mutations were analysed at the nucleotide level, from the COSMIC database. The most frequent substitutions were c -> t, g -> a, g -> t, and the most frequent codon changes were to termination codons. Deletions more than insertions, FS (frameshift) indels more than I-F (in-frame) ones, and single-nucleotide indels, were frequent. FS indels cause loss of significant fractions of proteins. The 5'-cut in FS deletions, and 5'-ligation in FS insertions, often occur between pairs of identical bases. Interestingly, the cut-site and 3'-ligation in insertions, and 3'-cut and join-pair in deletions, were each found to be the same significantly often (p < 0.001). It is suggested that these features aid the incorporation of indel mutations. Tumor suppressors undergo larger numbers of mutations, especially disruptive ones, over the entire protein length, to inactivate two alleles. Proto-oncogenes undergo fewer, less-disruptive mutations, in selected protein regions, to activate a single allele. Finally, catalogues, in ranked order, of genes mutated in each cancer, and cancers in which each gene is mutated, were created. The study highlights the nucleotide level preferences and disruptive nature of cancer mutations.