953 resultados para Multimode laser beam analyzer
Resumo:
During high-power cw Nd:YAG laser welding a vapour plume is formed containing vaporised material ejected from the keyhole. Spectroscopic studies of the vapour emission have demonstrated that the vapour can be considered as thermally excited gas with a stable temperature (less than 3000K), not as partially ionised plasma. In this paper, a review of temperatures in the vapour plume is presented. The difficulties in the analysis of the plume spectroscopic results are reviewed and explained. It is shown that particles present in the vapour interact with the laser beam, attenuating it. The attenuation can be calculated with Mie scattering theory, however, vaporisation and particle formation also both play a major role in this process. The laser beam is also defocused due to the scattering part of the attenuation mechanism, changing the energy density in the laser beam. Methods for mitigating the effects of the laser beam-vapour interaction, using control gases, are presented together with their advantages and disadvantages. This 'plume control' has two complementary roles: firstly, the gas must divert the vapour plume from out of the laser beam path, preventing the attenuation. Secondly, the gas has to stabilise the front wall of the keyhole, to prevent porosity formation.
Resumo:
SiO2-TiO2 sol-gel films are deposited on SiO2/Si by dip-coating technique. The SiO2-TiO2 strips are fabricated by laser direct writing using all ytterbium fiber laser and followed by chemical etching. Surface structures, morphologies and roughness of the films and strips are characterized. The experimental results demonstrate that the SiO2-TiO2 sol-gel film is loose in Structure and a shrinkage concave groove forms if the film is irradiated by laser beam. The surface roughness of both non-irradiated and laser irradiated areas increases with the chemical etching time. But the roughness of laser irradiated area increases more than that of non-irradiated area under the same etching time. After being etched for 28 s, the surface roughness value of the laser irradiated area increases from 0.3 nm to 3.1 nm.
Resumo:
Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper described a laser-excited time-resolved fluoroimmunoassay set. It made lanthanide ion to couple the anhydrde of diethylenetriaminepentaacetic acid (DTPAA) for labeling antibodies. The experiment used polystyrene tap coated with HCV antigen as the solid phase and a chelate of the rare earth metal europium as fluorescent label. A nitrogen laser beam was used to excite the Eu3+ chelates and after 60 ys delay time,the emission fluorescence was measured. Background fluorescence of short lifetimes caused by serum components and Raman scattering can be eliminated by set the delay rime. In the system condition, fluorescent spectra and fluorescent lifetimes of Eu3+ beta-naphthoyltrifluroacetone (NTA) chelates were measured. The fluorescent lifetime value is 650 mu s. The maximum emssion wavelength is 613 nm. The linear range of europium ion concentration is 1 x 10(-7)- 1 x 10(-11) g.mL(-1) and the detection limit is 1 x 10(-13) g.mL(-1). The relative standard deviation of determination ( n = 12) for samples at 0.01 ng.mL(-1) magnitude is 6.4%. Laser-TRFIA was also found to be suitable for diagnosis of HCV. The sensitvity and specificity were comparable to enzyme immunoassay. The result was obtained with laser-TRFIA for 29 human correlated well with enzyme immunoassay.
Resumo:
A Thomson scattering system has been installed at the Tokyo electron beam ion trap for probing characteristics of the electron beam. A YVO4 green laser beam was injected antiparallel to the electron beam. The image of the Thomson scattering light from the electron beam has been observed using a charged-coupled device camera. By using a combination of interference filters, the spectral distribution of the Thomson scattering light has been measured. The Doppler shift observed for the scattered light is consistent with the beam energy. The beam radius dependence was investigated as a function of the beam energy, the beam current, and the magnetic field at the trap region. The variation of the measured beam radius against the beam current and the magnetic field were similar to those in Herrmann's prediction. The beam radius as a function of the beam energy was also similar to Herrmann's prediction but seemed to become larger at low energy. (C) 2002 American Institute of Physics.
Resumo:
Light transmission through a single subwavelength aperture in a silver film is examined with a novel input configuration comprising an annular laser beam of variable diameter that is prism-coupled to the back face of the silver. Transmission peaks driven by excitation of the back-face surface plasmon mode or by the aperture resonance itself are separately observed. For both cases, comparison of films with and without a front-face, circular grating implies significantly more efficient coupling from the aperture fields to the front-face surface plasmon than directly to free radiation. (c) 2007 Optical Society of America.
Resumo:
A new regime is described for radiation pressure acceleration of a thin foil by an intense laser beam of above 10(20) W cm(-2). Highly monoenergetic proton beams extending to giga-electron-volt energies can be produced with very high efficiency using circularly polarized light. The proton beams have a very small divergence angle (< 4 degrees). This new method allows the construction of ultra-compact proton and ion accelerators with ultra-short particle bursts.
Resumo:
Filamentary ionization tracks have been observed via optical probing inside Al-coated glass targets after the interaction of a picosecond 20-TW laser pulse at intensities above 10(19) W/cm(2). The tracks, up to 700 mu m in length and between 10 and 20 mu m in width, originate from the focal spot region of the laser beam. Simulations performed with 3D particle-in-cell and 2D Fokker-Planck hybrid codes indicate that the observations are consistent with ionization induced in the glass target by magnetized, collimated beams of high-energy electrons produced during the laser interaction.
Resumo:
Recent progress using the VULCAN laser at the Rutherford Appleton Laboratory to pump X-ray lasing in nickel-like ions is reviewed. Double pulse pumping with similar to 100 ps pulses has been shown to produce significantly greater X-ray laser output than single pulses of duration 0.1-1 ns. With double pulse pumping, the main pumping pulse interacts with a pre-formed plasma created by a pre-pulse. The efficiency of lasing increases as there is a reduced effect of refraction of the X-ray laser beam due to smaller density gradients and larger gain volumes, which enable propagation of the X-ray laser beam along the full length of the target. The record shortest wavelength saturated laser at 5.9 nm has been achieved in Ni-like dysprosium using double pulse pumping of 75 ps duration from the VULCAN laser. A variant of the double pulse pumping using a single similar to 100 ps laser pulse and a superimposed short similar to 1 ps pulse has been found to further increase the efficiency of lasing by reducing the effects of over-ionisation during the gain period. The record shortest wavelength saturated laser pumped by a short similar to 1 ps pulse has been achieved in Ni-like samarium using the VULCAN laser operating in chirped pulse amplified (CPA) mode. Ni-like samarium lases at 7.3 nm. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
Resumo:
The spatial coherence of a nanosecond pulsed germanium collisionally excited x-ray laser is measured experimentally for three target configurations. The diagnostic is based on Young's slit interference fringes with a dispersing element to resolve the 23.2- and 23.6-nm spectral lines. Target configurations include a double-slab target, known as the injector, and geometries in which the injector image is image relayed to seed either an additional single-slab target or a second double-slab target. A special feature of this study is the observation of the change in the apparent source size with angle of refraction across the diverging laser beam. Source sizes derived with a Gaussian source model decrease from 44 mu m for the injector target by a variable factor of as much as 2, according to target configuration, for beams leaving the additional amplifiers after strong refraction in the plasma. (C) 1998 Optical Society of America [S0740-3224(98)00810-8].
Resumo:
Multipulse irradiation with 100 ps pulses of stripe Germanium targets is shown to enhance by up to several orders-of-magnitude the output of Ne-like Ge lasing on the J = 0-1 line at 196 Angstrom compared to single pulse pumping. Various pre-pulse and multipulse configurations have been experimentally investigated for irradiances of approximate to 4 x 10(13) W/cm(2) with a 1.06 mu m wavelength pumping laser. The ionisation balance measured by a KeV crystal spectrometer (KAP crystal) has been found to not affect the X-ray laser output. Good agreement between the experimental results and a fluid code incorporating atomic physics, gain and X-ray beam ray tracing is obtained. The code results show that the enhanced X-ray laser output is produced by multipulse irradiation reducing the electron density gradients in the gain region and simultaneously increasing the gain region spatial size. These changes reduce the effect of refraction on the X-ray laser beam propagation.
Resumo:
Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.
Resumo:
We have tested soft X-ray lasing in neon-like germanium with cylindrical targets where wave guiding and plasma confinement may affect lasing. An intense soft X-ray laser beam of 0.05 MW peak power and a narrow beam divergence (8 mrad) was produced at 23.6 nm with a 4 cm long straight cylindrical target of 0.72 mm inner diameter. Bending the cylindrical target to form a toroidal shape increased the lasing intensity by a factor of 3 accompanied with reduction of the beam divergence from 8 to 6 mrad.
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.