914 resultados para Multi-phase Modelling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of convective processes in moistening the atmosphere during suppressed periods of the suppressed phase of a Madden-Julian oscillation is investigated in cloud-resolving model (CRM) simulations, and the impact of moistening on the subsequent evolution of convection is assessed as part of a Global Energy and Water Cycle Experiment Cloud System Study (GCSS) intercomparison project. The ability of single-column model (SCM) versions of a number of state-of-the-art climate and numerical weather prediction models to capture these convective processes is also evaluated. During the suppressed periods, the CRMs are found to simulate a maximum moistening around 3 km, which is associated with a predominance of shallow convection. All SCMs produce adequate amounts of shallow convection during the suppressed periods, comparable to that seen in CRMs, but the relatively drier SCMs have higher precipitation rates than the relatively wetter SCMs and CRMs. The relatively drier SCMs dry, rather than moisten, the lower troposphere below the melting level. During the transition periods, convective processes act to moisten the atmosphere above the level at which mean advection changes from moistening to drying, despite an overall drying effect for the column. The SCMs capture some essence of this moistening at upper levels. A gradual transition from shallow to deep convection is simulated by the CRMs and the wetter SCMs during the transition periods, but the onset of deep convection is delayed in the drier SCMs. This results in lower precipitation rates for these SCMs during the active periods, although much better agreement exists between the models at this time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiated to reduce phosphorus loads to the lake, aiming to achieve at least a 40% reduction in phosphorus loads by 2045. Achievement of this target necessitates effective remediation strategies, which will rely upon an improved understanding of controls on nutrient export from tributaries of Lake Simcoe as well as improved understanding of the importance of phosphorus cycling within the lake. In this paper, we describe a new model structure for the integrated dynamic and process-based model INCA-P, which allows fully-distributed applications, suited to branched river networks. We demonstrate application of this model to the Black River, a tributary of Lake Simcoe, and use INCA-P to simulate the fluxes of P entering the lake system, apportion phosphorus among different sources in the catchment, and explore future scenarios of land-use change and nutrient management to identify high priority sites for implementation of watershed best management practises.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complexity of current and emerging architectures provides users with options about how best to use the available resources, but makes predicting performance challenging. In this work a benchmark-driven model is developed for a simple shallow water code on a Cray XE6 system, to explore how deployment choices such as domain decomposition and core affinity affect performance. The resource sharing present in modern multi-core architectures adds various levels of heterogeneity to the system. Shared resources often includes cache, memory, network controllers and in some cases floating point units (as in the AMD Bulldozer), which mean that the access time depends on the mapping of application tasks, and the core's location within the system. Heterogeneity further increases with the use of hardware-accelerators such as GPUs and the Intel Xeon Phi, where many specialist cores are attached to general-purpose cores. This trend for shared resources and non-uniform cores is expected to continue into the exascale era. The complexity of these systems means that various runtime scenarios are possible, and it has been found that under-populating nodes, altering the domain decomposition and non-standard task to core mappings can dramatically alter performance. To find this out, however, is often a process of trial and error. To better inform this process, a performance model was developed for a simple regular grid-based kernel code, shallow. The code comprises two distinct types of work, loop-based array updates and nearest-neighbour halo-exchanges. Separate performance models were developed for each part, both based on a similar methodology. Application specific benchmarks were run to measure performance for different problem sizes under different execution scenarios. These results were then fed into a performance model that derives resource usage for a given deployment scenario, with interpolation between results as necessary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statistical-dynamical downscaling method is used to estimate future changes of wind energy output (Eout) of a benchmark wind turbine across Europe at the regional scale. With this aim, 22 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble are considered. The downscaling method uses circulation weather types and regional climate modelling with the COSMO-CLM model. Future projections are computed for two time periods (2021–2060 and 2061–2100) following two scenarios (RCP4.5 and RCP8.5). The CMIP5 ensemble mean response reveals a more likely than not increase of mean annual Eout over Northern and Central Europe and a likely decrease over Southern Europe. There is some uncertainty with respect to the magnitude and the sign of the changes. Higher robustness in future changes is observed for specific seasons. Except from the Mediterranean area, an ensemble mean increase of Eout is simulated for winter and a decreasing for the summer season, resulting in a strong increase of the intra-annual variability for most of Europe. The latter is, in particular, probable during the second half of the 21st century under the RCP8.5 scenario. In general, signals are stronger for 2061–2100 compared to 2021–2060 and for RCP8.5 compared to RCP4.5. Regarding changes of the inter-annual variability of Eout for Central Europe, the future projections strongly vary between individual models and also between future periods and scenarios within single models. This study showed for an ensemble of 22 CMIP5 models that changes in the wind energy potentials over Europe may take place in future decades. However, due to the uncertainties detected in this research, further investigations with multi-model ensembles are needed to provide a better quantification and understanding of the future changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall conductor phase at the filling factor v = 2 was studied in the multi-layer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure. On the other hand, the quantized Hall phase of the weakly coupled multi-layers emitted an unexpected asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry is caused by a partial population of the extended electron states formed in the quantized Hall conductor phase due to the interlayer percolation. A sharp decrease of the single-particle scattering time associated with these extended states was observed at the filling factor v = 2. (c) 2007 Elsevier B.V. All rights reserved.