795 resultados para Mothers’ Knowledge,Understanding and Attitude,
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
This study investigated the development of three aspects of linguistic prosody in a group of children with Williams syndrome compared to typically developing children. The prosodic abilities investigated were: (1) the ability to understand and use prosody to make specific words or syllables stand out in an utterance (focus); (2) the ability to understand and use prosody to disambiguate complex noun phrases (chunking); (3) the ability to understand and use prosody to regulate conversational behaviour (turn-end). The data were analysed using a cross-sectional developmental trajectory approach. The results showed that, relative to chronological age, there was a delayed onset in the development of the ability of children with WS to use prosody to signal the most important word in an utterance (the focus function). Delayed rate of development was found for all the other aspects of expressive and receptive prosody under investigation. However, when non-verbal mental age was taken into consideration, there were no differences between the children with WS and the controls neither with the onset nor with the rate of development for any of the prosodic skills under investigation apart from the ability to use prosody in order to regulate conversational behaviour. We conclude that prosody is not a ‘preserved’ cognitive skill in WS. The genetic factors, development in other cognitive domains and environmental influences affect developmental pathways and as a result, development proceeds along an atypical trajectory.
Resumo:
Purpose – The purpose of this paper is to propose a process model for knowledge transfer in using theories relating knowledge communication and knowledge translation. Design/methodology/approach – Most of what is put forward in this paper is based on a research project titled “Procurement for innovation and knowledge transfer (ProFIK)”. The project is funded by a UK government research council – The Engineering and Physical Sciences Research Council (EPSRC). The discussions are mainly grounded on a thorough review of literature accomplished as part of the research project. Findings – The process model developed in this paper has built upon the theory of knowledge transfer and the theory of communication. Knowledge transfer, per se, is not a mere transfer of knowledge. It involves different stages of knowledge transformation. Depending on the context of knowledge transfer, it can also be influenced by many factors; some positive and some negative. The developed model of knowledge transfer attempts to encapsulate all these issues in order to create a holistic framework. Originality/value of paper – An attempt has been made in the paper to combine some of the significant theories or findings relating to knowledge transfer together, making the paper an original and valuable one.
Resumo:
Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A survey of the knowledge, attitudes and practices (KAP) of 100 rice farmers and 50 coconut farmers was conducted in the coastal lowland agro-ecosystems of the Sierra Madre Biodiversity Corridor, Luzon, Philippines to identify current rodent management practices and to understand the extent of rat damage and the attitudes of farmers to community actions for rodent management. Pests were most commonly listed as one of the three most important rice and coconut production constraints. Other major crop production constraints were typhoons and insufficient water. Farmers consider rats to be the major pest of coconut and of rice during the wet season rice crop, with average yield losses of 3.0% and 13.2%, respectively. Rice and coconut farmers practised a wide range of rodent management techniques. These included scrub clearance, hunting and trapping. Of the 42 rice farmers and 3 coconut farmers that applied rodenticides to control rodents, all used the acute rodenticide, zinc phosphide. However, only ten rice farmers (23.8%) applied rodenticides prior to the booting stage and only seven farmers (15.6%) conducted pre-baiting before applying zinc phosphide. The majority of farmers belonged to farmer organisations and believed that rat control can only be done by farmers working together. However, during the last cropping season, less than a third of rice farmers (31.2%) applied rodent management as a group. In order to reduce the impact of rodents on the farmers of the coastal lowlands of the Sierra Madre Biodiversity Corridor, integrated management strategies need to be developed that specifically target the pest rodents in a sustainable manner, and community actions for rodent management should be promoted.