905 resultados para Mineral Trioxide Aggregate
Resumo:
Este trabalho tem como objetivo avaliar a possibilidade de aproveitamento do resíduo obtido a partir da combustão do carvão mineral em caldeiras de leito fluidizado, de uma refinaria de alumina no estado do Pará. Neste contexto, foi avaliada a incorporação de cinzas volantes, como pozolana, em substituição parcial do cimento na produção de argamassas. Para tanto, foram elaborados corpos de prova utilizando-se o cimento do tipo Portland CPII-E-32. As misturas foram definidas na proporção 4:1, ou seja, 4 partes de agregado (sílica) e 1 parte de aglomerante (cimento e cinza), com a inserção de cinza nos teores de 10, 20, 30, 40 e 50 em porcentagem com relação ao cimento, além da argamassa sem adição. Foram definidas duas relações água/aglomerante, 0,4 e 0,8. Após tempo de cura de 7 e 28 dias, foram feitos testes de resistência à compressão para análise de comportamento. Além disso, as argamassas com a relação água/aglomerante 0,8 foram sujeitas a análises complementares de Difração de Raios-X, Microscopia Eletrônica de Varredura, absorção de água, porosidade aparente e massa específica aparente, cujos resultados obtidos mostraram-se compatíveis quando comparados com os dados da literatura, demonstrando ser viável a aplicação das cinzas estudadas na indústria da construção civil.
Resumo:
Este trabalho tem como objetivo o estudo da incorporação de cinzas provenientes da combustão do carvão mineral em caldeiras de leito fluidizado, na produção de argamassas, em substituição parcial do cimento. Foram elaborados corpos de prova utilizando-se os cimentos Portland com as especificações CPII-E-32 de características normais e areia de classificação abaixo da malha 100. Foram preparadas misturas na proporção 4 partes de agregado e 1 parte de cimento, com a inserção de cinzas nas proporções 0, 10, 20, 30, 40 e 50%. A argamassa foi desenvolvida em misturador e a moldagem foi feita em moldes de 5 cm x 10 cm. Foi analisado o comportamento de resistência à compressão após 28 dias. A resistência diminui conforme o aumento da porcentagem de cinzas. Foram feitas análises complementares de difração de raios X e constatou-se que a substituição desse resíduo pode ser feita com sucesso em argamassas com teores de até 30%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.
Resumo:
Crystalline aggregates composed of calcium carbonate were recovered in the uppermost 50 m of Nankai Trough sediments during DSDP Leg 87A. These aggregates decomposed with time to masses of sandy calcite as determined by X-ray diffraction analysis. Petrographic and scanning electron microscopy revealed textures suggestive of a precursor phrase prior to calcite, and this precursor has been tentatively identified as the mineral ikaite, CaCO3*6H2O. Stable isotope data suggest a large component of terrigenous organic matter as the carbon source, consistent with the appearance of these aggregates in highly reducing pyritic sediments containing abundant plant remains. We propose that these nodules formed in euxinic basins on the upper part of the Trough slope under normal seafloor conditions of pressure and temperature. Calculated temperatures of formation of this phase are not unusually low. The specimens from Site 583 are the first reported occurrences of ikaite in active margin sediments.
Resumo:
Passive performance of buildings is nowadays one of the key points, not only for reducing energy consumption of buildings, but also for decreasing “fuel poverty”. Among the constructive systems in buildings, façades are the ones having higher influence on thermal performance in urban spaces. Lime renders are specialized systems which can improve not only the durability of the support but also the thermal properties. According to previous researches, a modification of their radiative properties can reduce thermal fluxes between 24% and 89%. In this paper, the influences of the aggregate content in lime pastes, as well as the nature of the aggregates, colour and roughness, on the visible near and medium infrared reflectance are analyzed. Ten types of aerial lime mortars were prepared and two methods of reflectance determination were performed. Finally, the effect of the resulted reflectance on the constructive systems of façades was analyzed using pseudotime-dependent software, for which an annulation of the thermal fluxes or significant reduction of them can be observed, when modifying the aggregate nature.
Resumo:
Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.
Resumo:
Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.