965 resultados para Micro-structures
Resumo:
Porous carbon and carbide materials with different structures were characterized using adsorption of nitrogen at 77.4 K before and after preadsorption of n-nonane. The selective blocking of the microporosity with n-nonane shows that ordered mesoporous silicon carbide material (OM-SiC) is almost exclusively mesoporous whereas the ordered mesoporous carbon CMK-3 contains a significant amount of micropores (25%). The insertion of micropores into OM-SiC using selective extraction of silicon by hot chlorine gas leads to the formation of ordered mesoporous carbide-derived carbon (OM-CDC) with a hierarchical pore structure and significantly higher micropore volume as compared to CMK-3, whereas a CDC material from a nonporous precursor is exclusively microporous. Volumes of narrow micropores, calculated by adsorption of carbon dioxide at 273 K, are in linear correlation with the volumes blocked by n-nonane. Argon adsorption measurements at 87.3 K allow for precise and reliable calculation of the pore size distribution of the materials using density functional theory (DFT) methods.
Resumo:
This paper presents an empirical methodology for studying the reallocation of agricultural labour across sectors from micro data. Whereas different approaches have been employed in the literature to better understand the mobility of labour, looking at the determinants to exit farm employment and enter off-farm activities, the initial decision of individuals to work in agriculture, as opposed to other sectors, has often been neglected. The proposed methodology controls for the selectivity bias, which may arise in the presence of a non-random sample of the population, in this context those in agricultural employment, which would lead to biased and inconsistent estimates. A 3-step multivariate probit with two selection and one outcome equations constitutes the selected empirical approach to explore the determinants of farm labour to exit agriculture and switch occupational sector. The model can be used to take into account the different market and production structures across European member states on the allocation of agricultural labour and its adjustments.
Resumo:
By switching the level of analysis and aggregating data from the micro-level of individual cases to the macro-level, quantitative data can be analysed within a more case-based approach. This paper presents such an approach in two steps: In a first step, it discusses the combination of Social Network Analysis (SNA) and Qualitative Comparative Analysis (QCA) in a sequential mixed-methods research design. In such a design, quantitative social network data on individual cases and their relations at the micro-level are used to describe the structure of the network that these cases constitute at the macro-level. Different network structures can then be compared by QCA. This strategy allows adding an element of potential causal explanation to SNA, while SNA-indicators allow for a systematic description of the cases to be compared by QCA. Because mixing methods can be a promising, but also a risky endeavour, the methodological part also discusses the possibility that underlying assumptions of both methods could clash. In a second step, the research design presented beforehand is applied to an empirical study of policy network structures in Swiss politics. Through a comparison of 11 policy networks, causal paths that lead to a conflictual or consensual policy network structure are identified and discussed. The analysis reveals that different theoretical factors matter and that multiple conjunctural causation is at work. Based on both the methodological discussion and the empirical application, it appears that a combination of SNA and QCA can represent a helpful methodological design for social science research and a possibility of using quantitative data with a more case-based approach.
Resumo:
Protein molecular motors, which are natural nano-machines that convert the chemical energy into mechanical work for cellular motion, muscle contraction and cell division, have been integrated in the last decade in primitive nanodevices based on the motility of nano-biological objects in micro- and nano-fabricated structures. However, the motility of microorganisms powered by molecular motors has not been similarly exploited. Moreover, among the proposed devices based on molecular motors, i.e., nanosensors, nano-mechanical devices and nano-imaging devices, biocomputation devices are conspicuously missing. The present contribution discusses, based on the present state of the art nano- and micro-fabrication, the comparative advantages and disadvantages of using nano- and micro-biological objects in future computation devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.
Resumo:
The aim of this work was to investigate the feasibility of detecting and locating damage in large frame structures where visual inspection would be difficult or impossible. This method is based on a vibration technique for non-destructively assessing the integrity of structures by using measurements of changes in the natural frequencies. Such measurements can be made at a single point in the structure. The method requires that initially a comprehensive theoretical vibration analysis of the structure is undertaken and from it predictions are made of changes in dynamic characteristics that will occur if each member of the structure is damaged in turn. The natural frequencies of the undamaged structure are measured, and then routinely remeasured at intervals . If a change in the natural frequencies is detected a statistical method. is used to make the best match between the measured changes in frequency and the family of theoretical predictions. This predicts the most likely damage site. The theoretical analysis was based on the finite element method. Many structures were extensively studied and a computer model was used to simulate the effect of the extent and location of the damage on natural frequencies. Only one such analysis is required for each structure to be investigated. The experimental study was conducted on small structures In the laboratory. Frequency changes were found from inertance measurements on various plane and space frames. The computational requirements of the location analysis are small and a desk-top micro computer was used. Results of this work showed that the method was successful in detecting and locating damage in the test structures.
Resumo:
In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.
Resumo:
This thesis describes the design and development of an autonomous micro-drilling system capable of accurately controlling the penetration of complaint tissues and its application to the drilling of the cochleostomy; a key stage in the cochlea implant procedure. The drilling of the cochleostomy is a precision micro-surgical task in which the control of the burr penetration through the outer bone tissue of the cochlea is vital to prevent damage to the structures within and requires a high degree of skill to perform successfully. The micro-drilling system demonstrates that the penetration of the cochlea can be achieved consistently and accurately. Breakthrough can be detected and controlled to within 20µm of the distal surface and the hole completed without perforation of the underlying endosteal membrane, leaving the membranous cochlea intact. This device is the first autonomous surgical tool successfully deployed in the operating theatre. The system is unique due to the way in which it uses real-time data from the cutting tool to derive the state of the tool-tissue interaction. Being a smart tool it uses this state information to actively control the way in which the drilling process progresses. This sensor guided strategy enables the tool to self-reference to the deforming tissue and navigate without the need for pre-operative scan data. It is this capability that enables the system to operate in circumstances where the tissue properties and boundary conditions are unknown, without the need to restrain the patient.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
We present recent results on experimental micro-fabrication and numerical modeling of advanced photonic devices by means of direct writing by femtosecond laser. Transverse inscription geometry was routinely used to inscribe and modify photonic devices based on waveguiding structures. Typically, standard commercially available fibers were used as a template with a pre-fabricated waveguide. Using a direct, point-by-point inscription by infrared femtosecond laser, a range of fiber-based photonic devices was fabricated including Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG). Waveguides with a core of a couple of microns, periodic structures, and couplers have been also fabricated in planar geometry using the same method.
Resumo:
This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.
Resumo:
We present recent results on experimental micro-fabrication and numerical modeling of advanced photonic devices by means of direct writing by femtosecond laser. Transverse inscription geometry was routinely used to inscribe and modify photonic devices based on waveguiding structures. Typically, standard commercially available fibers were used as a template with a pre-fabricated waveguide. Using a direct, point-by-point inscription by infrared femtosecond laser, a range of fiber-based photonic devices was fabricated including Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG). Waveguides with a core of a couple of microns, periodic structures, and couplers have been also fabricated in planar geometry using the same method.
Resumo:
We present an optimization procedure to improve the propagation properties of the depressed cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm can be optimized beyond 3 micro meter for hexagonal WG structures with seven rings of tracks.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.