946 resultados para Mecanica dos fluidos
Resumo:
In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.
Resumo:
The flows turbulent and laminar are present in various applications of engineering and one of the villain of energy loss big is the surface friction. Currently, there are several research aimed for the study of reducing drag (DR) with the objective of developing effective methods to reduce the friction. Regardless of numerous research carried out until today, the phenomenon DR still remains in study not it is fully understood. This paper studied the drag reduction by polymer induction in turbulent internal flows in ducts. We constructed a testing bench to perform the analysis of drag reduction, the bench has basically two manometers with a 8.5 psi full scale, a peripheral pump 0.5 HP, an acrylic tank, valves and tubes pvc and is situated in the Laboratory Fluid Mechanics UFRN. Were used as polymer additives to polyethylene glycol 4000, the Polyox WSR N60K, Polyox WSR 301 and Polyox WSR 205. The rationale for the choice of these polymers is their wide application in situations requiring greater energy efficiency, such as the addition reducing polymers for the jet used by the fire department to achieve greater distances. The induced drag reduction polymers is investigated from the turbulent flow analysis, with Reynolds number in a range between 2×104
Resumo:
The flows turbulent and laminar are present in various applications of engineering and one of the villain of energy loss big is the surface friction. Currently, there are several research aimed for the study of reducing drag (DR) with the objective of developing effective methods to reduce the friction. Regardless of numerous research carried out until today, the phenomenon DR still remains in study not it is fully understood. This paper studied the drag reduction by polymer induction in turbulent internal flows in ducts. We constructed a testing bench to perform the analysis of drag reduction, the bench has basically two manometers with a 8.5 psi full scale, a peripheral pump 0.5 HP, an acrylic tank, valves and tubes pvc and is situated in the Laboratory Fluid Mechanics UFRN. Were used as polymer additives to polyethylene glycol 4000, the Polyox WSR N60K, Polyox WSR 301 and Polyox WSR 205. The rationale for the choice of these polymers is their wide application in situations requiring greater energy efficiency, such as the addition reducing polymers for the jet used by the fire department to achieve greater distances. The induced drag reduction polymers is investigated from the turbulent flow analysis, with Reynolds number in a range between 2×104
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
As time passed, humanity needed the development of new materials used in various activities. High strength materials such as titanium and Inconel for example, had been studied because they are widely used for implants in biomedicine, as well as their use in aerospace and automotive industries. Because of its thermal and mechanical properties, these materials are considered difficult to machine, promoting a rapid wear of cutting tools, primarily caused by the high temperatures in machining. With the development of new materials has emerged the need of developing new manufacturing processes. One of today’s innovative processes is the micro-manufacturing. Being a process with a defined cutting tool geometry, burr formation is a constant and undesirable phenomenon formed during the machininig process. Being detrimental to the manufacturing process, overspending deburring operations are constantly employed leading to increase the aggregate cost to the manufactured material. Assembly components are also impaired if there is no control of the burr, with consequences including the disposal of components due to the occurence of this phenomenon. This paper presents the study of micro-milling Inconel 718, investigating influential parameters in the formation of burrs in order to minimize the occurrence of this phenome non. Different feed rates per tooth and cutting speed are evaluated, and different cutting fluids with different methods of applying the fluid. Adding graphene to cutting fluids was considered as a variable to be investigated, which is considered an excellent solid lubricant, in addition to increasing the thermal conductivity of the cooling solution (AZIMI; MOZAF FARI, 2015). The micro-milling temperature was evaluated in the present work. It was observed a new phenomenon that causes the machined surface temperature decreases below room temperature when using the solution water + oil. This phenomenon is explained in further chapters. In order to unravel this phenomenon, a new test was proposed and, from this test, it can be concluded, comparatively, which cutting fluid has a better cooling property.Using cutting fluid with different thermal properties has shown influence when analy zing burr formation and reducing machining temperature.
Resumo:
La finalidad del presente trabajo de investigación es la elaboración de un plan estratégico para la empresa Ingeniería de Sistemas de Fluidos SAC para los siguientes tres años. Este plan se inicia analizando el entorno externo en el que se desempeña ISF SAC, tanto el entorno general como el entorno de la industria, de esta manera conocer las oportunidades y amenazas a las que se debe enfrentar la empresa. Una vez analizado el entorno externo, se realiza el análisis interno en el cual se evalúan las áreas funcionales así como la cadena de valor con la finalidad de obtener las fortalezas y debilidades de ISF SAC. Complementando estos resultados, se evalúan los recursos y capacidades para luego obtener la ventaja competitiva de la empresa y determinar la estrategia genérica. Una vez definida la estrategia genérica, se realiza el análisis de costos de los proyectos, por ser un aspecto crucial para el buen desempeño de la empresa en el largo plazo. Con esto, se puede proceder a determinar la misión, visión y objetivos estratégicos para ISF SAC, los cuales se tratarán de alcanzar siguiendo una estrategia de crecimiento adecuada y desarrollando planes funcionales para diferentes áreas de la empresa. La estrategia de crecimiento a emplearse se determina utilizando los métodos de la matriz FODA cruzada y la matriz PEYEA, cuyos resultados se analizan en la matriz cuantitativa de la planificación estratégica. Los cuatro planes funcionales (marketing, operaciones, recursos humanos y finanzas), detallan las acciones que se deben tomar para alcanzar los objetivos definidos previamente. El plan de responsabilidad social empresarial, complementa todos los resultados para establecer la importancia de las operaciones de la empresa dentro de la sociedad. Finalmente, se propone llevar el control de todos los aspectos antes mencionados utilizando el método del Balanced Scorecard donde se asignan los indicadores, metas y responsables de alcanzar los objetivos definidos. El trabajo finaliza con las conclusiones obtenidas así como recomendaciones para el futuro.
Simulação numérica da convecção mista em cavidade preenchida com meio poroso heterogêneo e homogêneo
Resumo:
In this work is presented mixed convection heat transfer inside a lid-driven cavity heated from below and filled with heterogeneous and homogeneous porous medium. In the heterogeneous approach, the solid domain is represented by heat conductive equally spaced blocks; the fluid phase surrounds the blocks being limited by the cavity walls. The homogeneous or pore-continuum approach is characterized by the cavity porosity and permeability. Generalized mass, momentum and energy conservation equations are obtained in dimensionless form to represent both the continuum and the pore-continuum models. The numerical solution is obtained via the finite volume method. QUICK interpolation scheme is set for numerical treatment of the advection terms and SIMPLE algorithm is applied for pressure-velocity coupling. Aiming the laminar regime, the flow parameters are kept in the range of 102≤Re≤103 and 103≤Ra≤106 for both the heterogeneous and homogeneous approaches. In the tested configurations for the continuous model, 9, 16, 36, and 64 blocks are considered for each combination of Re and Ra being the microscopic porosity set as constant φ=0,64 . For the pore-continuum model the Darcy number (Da) is set according to the number of blocks in the heterogeneous cavity and the φ. Numerical results of the comparative study between the microscopic and macroscopic approaches are presented. As a result, average Nusselt number equations for the continuum and the pore continuum models as a function of Ra and Re are obtained.
Resumo:
O escoamento sanguíneo é um dos temas de grande interesse para a comunidade científica. Assim, a busca de fluidos que sejam análogos ao sangue bem como o estudo do seu escoamento em microcanais, tal como acontece com o sangue nos capilares, continua a ser alvo de investigação. Numa primeira fase deste trabalho, procedeu-se ao desenvolvimento de um modelo inovador para produzir glóbulos vermelhos artificiais, constituído por Vesículas Unilamelares Gigantes, vulgarmente designadas Giant Unilamellar Vesicles (GUVs), com três concentrações diferentes. Pretende-se que estas vesículas tenham um comportamento reológico idêntico ao escoamento dos glóbulos vermelhos (GVs) em microcanais, permitindo assim proceder a vários estudos hemodinâmicos. No desenvolvimento destas vesículas, foi verificado que as mais adequadas são constituídas por uma mistura natural de lípidos e lecitina de soja. Foi realizado um estudo relativamente à sua concentração, onde se verificou que, com o aumento da quantidade da lecitina de soja nas soluções, a concentração de GUVs tende a aumentar. Foi também realizado um estudo relativo aos diâmetros dos GUVs para verificar se estes se aproximavam em termos de tamanho dos GVs, onde foi verificado que a maioria dos GUVs possuem diâmetros com dimensões entre os 5 e 7 μm, tal como os GVs. Foi ainda verificado que a solução com a menor concentração de lecitina de soja possui uma maior quantidade de GUVs com diâmetros entre os 5 e 7 μm. Na segunda fase, foi estudado experimentalmente o escoamento das três soluções de GUVs em microcanais hiperbólicos, com três caudais diferentes, com o objetivo de visualizar a Camada Livre de Células (CLC), determinar a deformação e estudar as velocidades destes. Foi verificado que existe a formação de CLC em todas as concentrações e que aumenta com o aumento do caudal. Relativamente à deformação, esta é bastante mais evidente na contração do microcanal onde a taxa deformação é máxima. Para o caso da velocidade, foi observado um aumento bastante significativo e linear da velocidade na região da contração do microcanal hiperbólico e uma velocidade baixa e aproximadamente constante a montante e jusante da contração. vi Por fim, foi também realizado o estudo reológico dos GUVs, de forma a investigar se estes têm uma viscosidade próxima do sangue. Foi verificado que os GUVs apresentam uma viscosidade inferior à do sangue total e que existe um ligeiro aumento da viscosidade dos GUVs com o aumento da sua concentração. Por último, também foi efetuada uma comparação da viscosidade da solução de GUVs com uma solução de 5% de Hematócrito (Hct) em soro fisiológico, onde foi verificado que ambas as viscosidades são muito próximas.
Resumo:
The new oil reservoirs discoveries in onshore and ultra deep water offshore fields and complex trajectories require the optimization of procedures to reduce the stops operation during the well drilling, especially because the platforms and equipment high cost, and risks which are inherent to the operation. Among the most important aspects stands out the drilling fluids project and their behavior against different situations that may occur during the process. By means of sedimentation experiments, a correlation has been validated to determe the sedimentation particles velocity in variable viscosity fluids over time, applying the correction due to effective viscosity that is a shear rate and time function. The viscosity evolution over time was obtained by carrying out rheologic tests using a fixed shear rate, small enough to not interfere in the fluid gelling process. With the sedimentation particles velocity and the fluid viscosity over time equations an iterative procedure was proposed to determine the particles displacement over time. These equations were implemented in a case study to simulate the cuttings sedimentation generated in the oil well drilling during stops operation, especially in the connections and tripping, allowing the drilling fluid project in order to maintain the cuttings in suspension, avoiding risks, such as stuck pipe and in more drastic conditions, the loss of the well
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Many of hydrocarbon reserves existing in the world are formed by heavy oils (°API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steamflooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. This works discusses the use of carbon dioxide, nitrogen, methane and water as an alternative fluid to the steam. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Brazilian Potiguar Basin. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that waterflood after steam injection interruption achieved the highest net cumulative oil compared to other fluids injection. Moreover, it was observed that steam and alternative fluids, co-injected and alternately, did not present increase on profitability project compared with steamflooding
Resumo:
Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction
Resumo:
Resumen: El Informe de Economía e Instituciones cuenta con tres columnas que abordan cuestiones teóricas y de política económica relacionadas con la temática de la economía y las instituciones. En la primera columna, Los sistemas nacionales de innovación, el autor realiza una reflexión sobre la transmisión de experiencias e investigaciones técnicas realizadas para el desarrollo, acumulación y creación de conocimientos. Fundamenta el éxito innovativo en la existencia previa de interacciones creadoras de conocimiento y destaca la complejidad que para concretar valiosas innovaciones encuentran las empresas al actuar de forma aislada. Finalmente, se concluye al respecto, que los avances en materia de innovaciones tecnológicas se apoyan fundamentalmente en las interrelaciones virtuosas que pudieran existir en las investigaciones de empresas, universidades y organismos gubernamentales trabajando de manera conjunta. En la segunda columna, La calidad institucional: una asignatura pendiente, el autor expone los objetivos de fundamentales de una estructura institucional de carácter dialógico: reemplazar/encauzar el conflicto y reducir la incertidumbre. Ambos objetivos, destaca el autor, no constituyen un estado permanente sino que entrañan una cierta proyectividad. Estos requisitos se ven vulnerados cuando se cae en una institucionalidad estática o cuando esta se basa en una voluntad unilateral. En ese contexto analiza una serie de instituciones y leyes recientes, a partir de la reforma constitucional de 1994, argumentando que su desarrollo, cargado de modificaciones incesantes, permite seguir considerando la calidad institucional como una “asignatura pendiente”. En la tercera columna, Una conjetura germinal: la revolución informática explica parte de la crisis financiera internacional, el autor sostiene que la fluidez en la circulación de la información, propiciada por el desarrollo de las nuevas tecnologías de la comunicación, es una de las causas de la última crisis internacional. Para ello, traza un paralelo entre el sistema financiero internacional y un circuito eléctrico. En este sentido, argumenta que con menores costos de transacción (dada la mejora tecnológica en comunicaciones), los intercambios se tornaron más fluidos, obteniendo resultados más eficientes. De la misma manera, sucede con un circuito eléctrico donde las resistencias producen pérdidas y empeoran la eficiencia energética, pero la contraparte es que el mismo se vuelve necesariamente más inestable. Inestabilidad que se puede constatar, en términos económicos, por la existencia de burbujas especulativas. En este contexto muestra la relevancia y los efectos que el entorno institucional tiene sobre el desempeño económico.