985 resultados para Matrix-Variate Statistical Distributions
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.
Resumo:
A bivariate semi-Pareto distribution is introduced and characterized using geometric minimization. Autoregressive minification models for bivariate random vectors with bivariate semi-Pareto and bivariate Pareto distributions are also discussed. Multivariate generalizations of the distributions and the processes are briefly indicated.
Resumo:
The increase in traffic growth and maintenance expenditures demands the urgent need for building better, long-lasting, and more efficient roads preventing or minimizing bituminous pavement distresses. Many of the principal distresses in pavements initiate or increase in severity due to the presence of water. In Kerala highways, where traditional dense graded mixtures are used for the surface courses, major distress is due to moisture induced damages. The Stone Matrix Asphalt (SMA) mixtures provide a durable surface course. Proven field performance of test track at Delhi recommends Stone Matrix Asphalt as a right choice to sustain severe climatic and heavy traffic conditions. But the concept of SMA in India is not so popularized and its application is very limited mainly due to the lack of proper specifications. This research is an attempt to study the influence of additives on the characteristics of SMA mixtures and to propose an ideal surface course for the pavements. The additives used for this investigation are coir, sisal, banana fibres (natural fibres), waste plastics (waste material) and polypropylene (polymer). A preliminary investigation is conducted to characterize the materials used in this study. Marshall test is conducted for optimizing the SMA mixtures (Control mixture-without additives and Stabilized mixtures with additives). Indirect tensile strength tests, compression strength tests, triaxial strength tests and drain down sensitivity tests are conducted to study the engineering properties of stabilized mixtures. The comparison of the performance of all stabilized mixtures with the control mixture and among themselves are carried out. A statistical analysis (SPSS package Ver.16) is performed to establish the findings of this study
Resumo:
This paper compares statistical technique of paraphrase identification to semantic technique of paraphrase identification. The statistical techniques used for comparison are word set and word-order based methods where as the semantic technique used is the WordNet similarity matrix method described by Stevenson and Fernando in [3].
Resumo:
In this paper, a family of bivariate distributions whose marginals are weighted distributions in the original variables is studied. The relationship between the failure rates of the derived and original models are obtained. These relationships are used to provide some characterizations of specific bivariate models
Resumo:
Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing
Resumo:
Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.
Resumo:
En este trabajo se realiza la medición del riesgo de mercado para el portafolio de TES de un banco colombiano determinado, abordando el pronóstico de valor en riesgo (VaR) mediante diferentes modelos multivariados de volatilidad: EWMA, GARCH ortogonal, GARCH robusto, así como distintos modelos de VaR con distribución normal y distribución t-student, evaluando su eficiencia con las metodologías de backtesting propuestas por Candelon et al. (2011) con base en el método generalizado de momentos, junto con los test de independencia y de cobertura condicional planteados por Christoffersen y Pelletier (2004) y por Berkowitz, Christoffersen y Pelletier (2010). Los resultados obtenidos demuestran que la mejor especificación del VaR para la medición del riesgo de mercado del portafolio de TES de los bancos colombianos, es el construido a partir de volatilidades EWMA y basado en la distribución normal, ya que satisface las hipótesis de cobertura no condicional, independencia y cobertura condicional, al igual que los requerimientos estipulados en Basilea II y en la normativa vigente en Colombia.
Resumo:
We propose and estimate a financial distress model that explicitly accounts for the interactions or spill-over effects between financial institutions, through the use of a spatial continuity matrix that is build from financial network data of inter bank transactions. Such setup of the financial distress model allows for the empirical validation of the importance of network externalities in determining financial distress, in addition to institution specific and macroeconomic covariates. The relevance of such specification is that it incorporates simultaneously micro-prudential factors (Basel 2) as well as macro-prudential and systemic factors (Basel 3) as determinants of financial distress. Results indicate network externalities are an important determinant of financial health of a financial institutions. The parameter that measures the effect of network externalities is both economically and statistical significant and its inclusion as a risk factor reduces the importance of the firm specific variables such as the size or degree of leverage of the financial institution. In addition we analyze the policy implications of the network factor model for capital requirements and deposit insurance pricing.
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society
Resumo:
We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.