955 resultados para Markov random fields (MRFs)
Resumo:
Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. The first paper of this series examined the effects of the former on the variogram and this paper examines the effects of asymmetry arising from outliers. Simulated annealing was used to create normally distributed random fields of different size that are realizations of known processes described by variograms with different nugget:sill ratios. These primary data sets were then contaminated with randomly located and spatially aggregated outliers from a secondary process to produce different degrees of asymmetry. Experimental variograms were computed from these data by Matheron's estimator and by three robust estimators. The effects of standard data transformations on the coefficient of skewness and on the variogram were also investigated. Cross-validation was used to assess the performance of models fitted to experimental variograms computed from a range of data contaminated by outliers for kriging. The results showed that where skewness was caused by outliers the variograms retained their general shape, but showed an increase in the nugget and sill variances and nugget:sill ratios. This effect was only slightly more for the smallest data set than for the two larger data sets and there was little difference between the results for the latter. Overall, the effect of size of data set was small for all analyses. The nugget:sill ratio showed a consistent decrease after transformation to both square roots and logarithms; the decrease was generally larger for the latter, however. Aggregated outliers had different effects on the variogram shape from those that were randomly located, and this also depended on whether they were aggregated near to the edge or the centre of the field. The results of cross-validation showed that the robust estimators and the removal of outliers were the most effective ways of dealing with outliers for variogram estimation and kriging. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.
Resumo:
Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.
Resumo:
Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.
Resumo:
Purpose: To evaluate the microvessel density by comparing the performance of anti-factor VIII-related antigen, anti-CD31 and, anti-CD34 monoclonal antibodies in breast cancer. Methods: Twenty-three postmenopausal women diagnosed with Stage II breast cancer submitted to definitive surgical treatment were evaluated. The monoclonal antibodies used were anti-factor VIII, anti-CD31 and anti-CD34. Microvessels were counted in the areas of highest microvessel density in ten random fields (200 x). The data were analyzed using the Kruskal-Wallis nonparametric test (p < 0.05). Results: Mean microvessel densities with anti-factor VIII, anti-CD31 and anti-CD34 were 4.16 +/- 0.38, 4.09 +/- 0.23 and 6.59 +/- 0.42, respectively. Microvessel density as assessed by anti-CD34 was significantly greater than that detected by anti-CD31 or anti-factor VIII (p < 0.0001). There was no statistically significant difference between anti-CD31 and anti-factor VIII (p = 0.4889). Conclusion: The density of stained microvessels was greater and staining was more intense with anti-CD34 compared to anti-CD31 and anti-factor VII-related antigen.
Resumo:
In this paper, a methodology is proposed for the geometric refinement of laser scanning building roof contours using high-resolution aerial images and Markov Random Field (MRF) models. The proposed methodology takes for granted that the 3D description of each building roof reconstructed from the laser scanning data (i.e., a polyhedron) is topologically correct and that it is only necessary to improve its accuracy. Since roof ridges are accurately extracted from laser scanning data, our main objective is to use high-resolution aerial images to improve the accuracy of roof outlines. In order to meet this goal, the available roof contours are first projected onto the image-space. After that, the projected polygons and the straight lines extracted from the image are used to establish an MRF description, which is based on relations ( relative length, proximity, and orientation) between the two sets of straight lines. The energy function associated with the MRF is minimized by using a modified version of the brute force algorithm, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding laser scanning polygon projected onto the image-space. The preliminary results showed that the proposed methodology is promising, since most sides of the refined polygons are geometrically better than corresponding projected laser scanning straight lines.
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
Th17 cells have been strongly associated to the pathogenesis of inflammatory and autoimmune diseases, although their influence on the carcinogenesis is still little known, there are reports of anti-tumor and protumoral actions. The objective of this study is to research the presence of Th17 lineage in lip and tongue SCC, using the analysis of the immunoexpression of IL-17 and RORγt, relating this immunoexpression with clinical and morphological findings in the attempt to better comprehend the role of these cells on the tumoral immunity of OSCCs. The results were submitted to non-parametric statistical tests with significance level of 5%. On the histomorphological analysis, it was observed the predominance of low level lesions on lip and high level lesions on tongue (p=0,024). It was not observed statistical significance between clinical stage and histological gradation of malignancy (p=0,644). For the immunohistochemical study, 5 random fields with greater immunoreactivity of the peritumoral inflammatory infiltrate were photomicrographed on the 400x magnification. It was done the count of lymphocytes which showed cytoplasmic and pericytoplasmic staining for the IL-17 cytokine as well as nuclear and cytoplasmic staining for RORγt. It was observed statistical significance difference on the quantity of immunopositive lymphocytes to IL-17 between the groups of SCC of lip and tongue (p=0,028). For the RORγt it was not observed statistical significance difference between the groups of SCC of lip and tongue (p=0,915). It was not observed statistical difference between the immunostaining of IL-17 and RORγt with histological gradation of malignancy and clinical staging. The findings of this research suggest a possible anti-tumor role of IL-17 for cases of lip. The results of the analysis of the RORγt are possibly due to the wide duality of the anti-tumor and protumoral role of the Th17 cells and their plasticity which, in the presence of different cytokines expressed on the tumor microenvironment, can alter its phenotype.
Resumo:
In this paper is presented a region-based methodology for Digital Elevation Model segmentation obtained from laser scanning data. The methodology is based on two sequential techniques, i.e., a recursive splitting technique using the quad tree structure followed by a region merging technique using the Markov Random Field model. The recursive splitting technique starts splitting the Digital Elevation Model into homogeneous regions. However, due to slight height differences in the Digital Elevation Model, region fragmentation can be relatively high. In order to minimize the fragmentation, a region merging technique based on the Markov Random Field model is applied to the previously segmented data. The resulting regions are firstly structured by using the so-called Region Adjacency Graph. Each node of the Region Adjacency Graph represents a region of the Digital Elevation Model segmented and two nodes have connectivity between them if corresponding regions share a common boundary. Next it is assumed that the random variable related to each node, follows the Markov Random Field model. This hypothesis allows the derivation of the posteriori probability distribution function whose solution is obtained by the Maximum a Posteriori estimation. Regions presenting high probability of similarity are merged. Experiments carried out with laser scanning data showed that the methodology allows to separate the objects in the Digital Elevation Model with a low amount of fragmentation.
Resumo:
A study was conducted to evaluate in vitro the effect of root surface conditioning with basic fibroblast growth factor (b-FGF) on morphology and proliferation of fibroblasts. Three experimental groups were used: non-treated, and treated with 50 microg or 125 microg b-FGF/ml. The dentin samples in each group were divided into subgroups according to the chemical treatment received before application of b-FGF: none, or conditioned with tetracycline-HCl or EDTA. After contact with b-FGF for 5 min, the samples were incubated for 24 h with 1 ml of culture medium containing 1 x 10(5) cells/ml plus 1 ml of culture medium alone. The samples were then subjected to routine preparation for SEM, and random fields were photographed. Three calibrated and blind examiners performed the assessment of morphology and density according to two index systems. Classification and regression trees indicated that the root surfaces treated with 125 microg b-FGF and previously conditioned with tetracycline-HCl or EDTA presented a morphology more suggestive of cellular adhesion and viability (P = 0.004). The density of fibroblasts on samples previously conditioned with EDTA, regardless of treatment with b-FGF, was significantly higher than in the other groups (P < 0.001). The present findings suggest that topical application of b-FGF has a positive influence on both the density and morphology of fibroblasts.
Resumo:
This paper proposes a method by simulated annealing for building roof contours identification from LiDAR-derived digital elevation model. Our method is based on the concept of first extracting aboveground objects and then identifying those objects that are building roof contours. First, to detect aboveground objects (buildings, trees, etc.), the digital elevation model is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing algorithm. Experiments carried out with laser scanning digital elevation model showed that the methodology works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
In this paper, a method is proposed to refine the LASER 3D roofs geometrically by using a high-resolution aerial image and Markov Random Field (MRF) models. In order to do so, a MRF description for grouping straight lines is developed, assuming that each projected side contour and ridge is topologically correct and that it is only necessary to improve its accuracy. Although the combination of laser data with data from image is most justified for refining roof contour, the structure of ridges can give greater robustness in the topological description of the roof structure. The MRF model is formulated based on relationships (length, proximity, and orientation) between the straight lines extracted from the image and projected polygon and also on retangularity and corner injunctions. The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding LASER scanning polygon projected onto the image-space. The results obtained were satisfactory. This method was able to provide polygons roof refined buildings in which most of its contour sides and ridges were geometrically improved.