962 resultados para Main-chain scission


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chain structure, spherulite morphology, and theological property of LL-DPE-g-AA were studied by using electronspray mass spectroscopy, C-13-NMR, and rheometer. Experimental evidence proved that AA monomers grafted onto the LLDPE backbone formed multiunit AA branch chains. It was found that AA branch chains could hinder movement of the LLDPE main chain during crystallization. Spherulites of LLDPE became more anomalous because of the presence of AA branch chains. Rheological behavior showed that AA branch chains could act as an inner plasticizer at the temperature range of 170-200 degreesC, which made LLDPE-g-AA easy to further process. (C) 2001 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of liquid crystalline copolyethers have been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,12-dibromododecene [coTPPs(7/12)], which represents copolyethers containing both odd and even numbers of methylene units. The molar ratio of odd to even methylene units in this series ranges from 1/9 to 9/1. The coTPPs(7/12) exhibit multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. For all these thermal transitions, a small undercooling and superheating dependence is observed upon cooling and heating at different rates. Three types of phase behaviors can be classified in coTPPs(7/12) on the basis of the structural analyses by wide-angle X-ray diffraction on powder and fiber samples and by electron diffraction experiments in transmission electron microscopy. At room temperature, highly ordered smectic and smectic crystal (SC) phases are identified in coTPPs(7/12: 1/9 and 2/8), which is similar to the homopolymer TPP(m = 12). The coTPPs(7/12: 3/7, 4/6, and 5/5) possess a hexagonal columnar (Phi(H)) phase in which the molecular and columnar axes are parallel to the fiber direction and perpendicular to the hexagonal lateral packing. The coTPPs(7/12: 6/4, 7/3, and 8/2) possess a tilted hexagonal columnar (Phi(TH)) phase with a single tilt angle which increases with the increasing composition of the seven-numbered methylene units. However, in coTPP(7/12: 9/1), a Phi(TH) phase with multiple tilt angles is found. Upon heating, phase structures in most coTPPs(7/12) involving the columnar phases enter directly into the nematic (N) phase, while the coTPP(7/12: 1/9) exhibits a highly ordered smectic F (S-F) phase before it reaches the N phase. One exception is found in coTPP(7/12: 2/8), wherein the transformation from the S-F to Phi(H) occurs prior to the N phase. Combining the copolymer phase behaviors observed with the corresponding homopolymers TPP(n = 7) and TPP(m = 12), a phase diagram describing transition temperatures with respect to the composition can be constructed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to investigate the influence of the main chain structure and molecular weight on the sensitivity of photosensitive ester-type precursor of polyimide (photo-PAE), an improved method was used to synthesize several kinds of photo-PAEs with relatively high molecular weight. Their sensitivities (at 365 nm) were investigated, and it was found that some additives such as sensitizer and photoinitiator had the greatest influence on the sensitivity of photo-PAE, that the photo-PAE with BPDA and mPDA as the main chain structure had the best sensitivity (D-0.5: 5-10 mJ/cm(2)) among the studied photo-PAEs, and that the sensitivity did not significantly change with the change of inherent viscosity of photo-PAE. Meanwhile, the thermal imidization of these photo-PAEs was also investigated by means of TGA and IR analyses. Additionally, a discussion was made for formulation of PSPI resist. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel optically active aromatic poly(amide-imide)s (PAIs) containing 1,1'-binaphthyl-2,2'-diyl units in the main chain were prepared by polycondensation reactions of newly synthesized dianhydride, 2,2'-bis(3,4-dicarboxylzenzamido)-1,1'-binaphthyl dianhydride[(S)-BN-DADA and (+/-)-BNDADA], with diamines, The properties of the resulted PAIs were fully characterized by a combination of investigations on inherent viscosity, thermal properties(DSC and TGA), specific rotation, CD and UV-Vis absorbance. These PAIs showed good solubilities, thermal properties and optical stabilities. Interesting UV-Vis absorption behavior of films casted from these PAIs was observed and analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Persistent spectral hole burning spectroscopy is applied to evaluate the low-temperature relaxation around the dye molecules doped in several types of polymers. The doped dye is tetraphenylporphine, and the measured polymers are vinyl polymers and main chain aromatic polymers. The changes of microscopic environments around the dye are evaluated from the changes in the hole profiles during temperature cycling experiments. The relaxation behavior of the polymers is discussed in relation to their chemical structures. (C) 1999 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The novel poly(aryl ether ketone)s with liquid crystallinity were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with 4,4'-difluorobenzophenone and their thermotropic liquid crystalline properties were characterized by DSC, PLM and WAXD, The copolymers containing 70% biphenol formed nematic phase while the copolymer containing 50% biphenol exhibited smectic texture, The banded textures were formed after shearing the sample in the nematic liquid crystalline state. The identification of the structures in each mesogenic phase has been carried out by combining WAXD with PLM and DSC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline was doped with sulfonated PS, PPO and PEEK. The properties of doped polyaniline depended on the processing method and the structure of main chain backbone of the macromolecular acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stress relaxation and dynamic mechanical behavior of phenolphthalein poly(ether ketone) (PEK-C) have been investigated. Using Ferry's reduction method, the master curve was obtained. From the experimental results, we found that the WLF equation is not appropriate in the lower-temperature range (T < T-g). The relaxation spectrum was calculated according to the first approximation method proposed by Schwarzl and Staverman. In addition to the alpha-transition region, a second transition zone is revealed at low temperature. This transition is probably due to a restricted motion of its main chain. (C) 1995 John Wiley and Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrahigh molecular weight polyethylene (UHMWPE) has been irradiated (0-40 Mrad) with a Co-60 source at room temperature under vacuum. The crystallinity has been investigated by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The mechanical properties have been determined at room temperature. A significant increase of heat of fusion can be seen at low irradiation doses, which is attributed to crystallization, caused by chain scission during the process of irradiation. It is also observed that the thickness of the lamellae changes with irradiation dose. The Young's modulus has been improved significantly after irradiation at low doses. (C) 1993 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-resolution C-13 n.m.r. spectrum of soluble polyaniline in DMF-d7 solution was recorded. The assignment for the various resonance peaks in the spectrum was tentatively performed and the chain structure of polyaniline was analysed. It has been shown that the main chain of pristine state polyaniline is composed of alternating benzoid-quinoid and successive benzoid-quinoid sequences with the former being present in greater concentration. The sequence distribution is random. In addition to the benzoid-type and quinoid-type structures, there is a small amount of other structural units in the main chain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In chain molecules of 1, 2-PBD, there are two kinds of gauche arrangements, which is the cause of making the spectrum of the secondary carbon in main chain of the polymer split. In such a complex system, the gauche arrangements of the secondary carbon and the tertiary carbon occupy an important position. Hence, the contribution of the tertiary carbon to the chemical shifts of the secondary carbon has a decisive effect on the sequence structure distribution. In comparison the contribution of vinyl groups is ...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predicable and controlled degradation is not only central to the accurate delivery of bioactive agents and drugs, it also plays a vital role in key aspects of bone tissue engineering. The work addressed in this paper investigates the utilisation of e-beam irradiation in order to achieve a controlled (surface) degradation profile. This study focuses on the modification of commercially and clinically relevant materials, namely poly(L-lactic acid) (PLLA), poly(L-lactide-hydroxyapatite) (PLLA-HA), poly(L-lactide-glycolide) co-polymer (PLG) and poly(L-lactide-DL-lactide) co-polymer (PLDL). Samples were subjected to irradiation treatments using a 0.5 MeV electron beam with delivered surface doses of 150 and 500 kGy. In addition, an acrylic attenuation shield was used for selected samples to control the penetration of the e-beam. E-beam irradiation induced chain scission in all polymers, as characterized by reduced molecular weights and glass transition temperatures (T-g). Irradiation not only produced changes in the physical properties of the polymers but also had associated effects on surface erosion of the materials during hydrolytic degradation. Moreover, the extent to which both mechanical and hydrolytic degradation was observed is synonymous with the estimated penetration of the beam (as controlled by the employment of an attenuation shield). (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study reports the effects of: the molecular weight ratio of poly(epsilon -caprolactone) (PCL) in blends containing polymer of high (50 000 g mol(-1)) and low (4000 g mol(-1)) molecular weight; the concentration (0, 1, and 5 wt-%) of poly(vinyl pyrrolidone/iodine) (PVP/I); and storage at 30 degreesC and 75% relative humidity; on the thermomechanical properties of films prepared by solvent evaporation from solutions containing both PCL and PVP/I. The tensile properties were found to be statistically dependent on the molecular weight ratio of PCL but not on the concentration of PVP/I. The reductions in tensile strength and elongation at break associated with increasing amounts of low molecular weight PCL were attributed to a reduction in the concentration of chain entanglements. No changes were observed in viscoelastic properties or the glass transition temperature. Following storage there were no changes in the tensile strength, glass transition temperature, or viscoelastic properties of the films; however, significant reductions in elongation at break were observed. It is suggested that this is due to hydrolytic chain scission of amorphous PCL. Inclusion of 5 wt-% PVP/I increased this process in films containing 100:0 and 80:20 high/low molecular weight PCL (but not 60.40), but the extent of this was small. This study highlighted significant aging properties of PCL in a moist atmosphere. Consequently, it is recommended that suitable packaging materials should be employed to control the exposure of PCL films to water during storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.