983 resultados para Magnetite catalyst


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-pot synthesis of amorphous iron oxide nanoparticles with two different dimensions (<5 nm and 60 nm) has been achieved using the reverse micelle method, with <5 nm nanoparticles separated from the stable colloid by exploiting their magnetic behaviour. The transformation of the as-prepared amorphous powders into Fe3O4 and Fe2O3 phases (gamma and alpha) is achieved by carrying out controlled annealing at elevated temperatures under different optimized conditions. The as-prepared samples resulting from micellar synthesis and the corresponding annealed ones are thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM), and by Raman and X-ray photoelectron spectroscopies. Expectedly, the magnetic characteristics of Fe3O4 and Fe2O3 phase (gamma and alpha) nanoparticles are found to have strong dependence on their phase, dimension, and morphology. The coercivity of Fe3O4 and Fe2O3 (gamma and alpha) nanoparticles is reasonably high, even though high resolution TEM studies bring out that these nanoparticles are single crystalline. This is in contrast with previous reports wherein poly-crystallinity of iron oxides nanoparticles has been regarded as a prerequisite for high coercivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates the use of few-layer borocarbonitride nanosheets synthesized by a simple method as non-platinum cathode catalysts for the oxygen reduction reaction (ORR) in alkaline medium. Composition-dependent ORR activity is observed and the best performance was found when the composition was carbon-rich. Mechanistic aspects reveal that ORR follows the 4e(-) pathway with kinetic parameters comparable to those of the commercial Pt/C catalyst. Excellent methanol tolerance is observed with the BCN nanosheets unlike with Pt/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient, robust and highly enantioselective catalytic desymmetrization of 2,2-disubstituted cyclopentene-1,3-diones is developed via direct vinylogous nucleophilic addition of deconjugated butenolides. A remarkable influence of the secondary catalyst site on the enantioselectivity points towards an intriguing mechanistic scenario, possibly by triggering a change in catalyst conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of an amorphous cobalt based oxygen evolution catalyst called Co-Pi has been recently reported from a neutral phosphate buffer solution containing Co2+. But the concentration of Co2+ is as low as 0.5 mM due to poor solubility of a cobalt salt in phosphate medium. In the present study, a cobalt acetate based oxygen evolution catalyst (Co-Ac) is prepared from a neutral acetate buffer solution, where the solubility of Co2+ is very high (>100 times in comparison with phosphate buffer solution). The Co-Ac possesses better catalytic activity than the Co-Pi with an additional advantage of easy bulk scale preparation. The comparative studies on the oxygen evolution reaction (OER) activity of Co-Ac and Co-Pi in phosphate and acetate buffer electrolytes reveal that the Co-Ac exhibits enhanced synergistic catalytic activity in phosphate solution, probably due to partial substitution of acetate in the catalyst layer by phosphate, resulting in the formation of a Co-Ac-Pi catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach toward the synthesis of hollow silver nanoparticle (NP) cages built with building blocks of silver NPs by layer-by-layer (LbL) assembly is demonstrated. The size of the NP cage depends on the size of template used for the LbL assembly. The microcages showed a uniform distribution of spherical silver nanoparticles with an average diameter of 20 +/- 5 nm, which increased to 40 +/- S nm when the AgNO3 concentration was increased from 25 to 50 mM. Heat treatment of the polyelectrolyte capsules at 80 degrees C near their pK(a) values yielded intact nano/micro cages. These cages produced a higher conversion for the epoxidation of olefins and maintained their catalytic activity even after four successive uses. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for further development as heterogeneous catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPY) is grown on reduced graphene oxide (RGO) and the composite is studied as a catalyst for O-2 electrode in Li-O-2 cells. PPY is uniformly distributed on the two dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using RGO-PPY catalyst exhibit an initial discharge capacity as high as 3358 mAh g(-1) (3.94 mAh cm(-2)) at a current density of 0.3 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(RGO-PPY) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(RGO-PPY) cell delivers a discharge capacity of 550 mAh g(-1) (0.43 mAh cm(-2)) at a current density of 1.0 mA cm(-2). The results suggest that RGO-PPY is a promising catalyst of O-2 electrode for high rate rechargeable Li-O-2 cells. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. Multi-walled carbon-nanotubes (MWCNTs) as cathode-catalyst support are found to enhance long-term stability of platinum catalyst (Pt) in relation to non-graphitic carbon. In addition, highly graphitic MWCNTs (G-MWCNTs) are found to be electrochemically more stable than pristine MWCNTs. This is because graphitic-carbon-supported-Pt (Pt/MWCNTs) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported-Pt (Pt/C) cathodes in PEFCs during accelerated stress-test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance, and charge-transfer resistance are monitored through cyclic voltammetry, cell polarization, and impedance measurements, respectively. The extent of crystallinity, namely amorphous or graphitic nature of the three supports, is examined by Raman spectroscopy. X-ray diffraction and transmission electron microscopy studies both prior and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/G-MWCNTs and Pt/MWCNTs cathodes in relation to Pt/C cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt particles. It is also found that with increasing degree of graphitization, the electrochemical stability for MWCNTs increases due to the lesser surface defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported metallic nanoparticles are important composite materials owing to their enormous potential for applications in various fields. In this work, palladium nanoparticles were prepared in situ in a calcium-cholate (Ca-Ch) hydrogel by reduction with sodium cyanoborohydride. The hydrogel matrix appeared to assist the controlled growth as well as stabilization of palladium nanoparticles. The palladium nanoparticle/Ca-Ch hydrogel hybrid was characterized by scanning and transmission electron microscopy, atomic force microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Furthermore, the PdNP/Ca-Ch hybrid xerogel was shown to act as an active catalyst for the Suzuki reaction under aqueous aerobic conditions. The PdNP/Ca-Ch xerogel retains its catalytic activities on storage for several months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of ZnO nanorod films decorated with cobalt-acetate (CoAc) electrocatalyst and its activity for photoelectrolysis of water have been demonstrated. The photochemically prepared CoAc catalyst is chemically and morphologically similar to the electrochemically prepared CoAc catalyst. The on-set potential of oxygen evolution reaction is lower on CoAc-ZnO photoanode in relation to bare ZnO photoanode. There is a three to four fold increase in photooxidation current of OER due to the presence of CoAc co-catalyst on ZnO. Thus, the photochemically prepared CoAc on ZnO is an alternative and efficient co-catalyst for photoelectrochemical oxygen evolution reaction. The enhancement in photocatalytic activity of ZnO by the CoAc catalyst photochemically deposited from acetate buffer solution is significantly greater than the cobalt-phosphate (CoPi) co-catalyst deposited from phosphate buffer solution. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium nanoparticles-anchored reduced graphene oxide (Ir-RGO) was prepared by simultaneous reduction of graphene oxide and Ir3+ ions and its catalytic activity for oxygen electrode in Li-O-2 cells was demonstrated. Ir particles with an average size of 3.9 nm were uniformly distributed on RGO sheets. The oxygen reduction reaction (ORR) was studied on an Ir-RGO catalyst in non-aqueous electrolytes using cyclic voltammetry and rotating disk electrode techniques. Li-O-2 cells with Ir-RGO as a bifunctional oxygen electrode catalyst were subjected to charge-discharge cycling at several current densities. A discharge capacity of 9529 mA h g(-1) (11.36 mA h cm(-2)) was obtained initially at a current density of 0.5 mA cm(-2) (393 mA g(-1)). A decrease in capacity was observed on increasing the current density. Although there was a decrease in capacity on repeated discharge-charge cycling initially, a stable capacity was observed for about 30 cycles. The results suggest that Ir-RGO is a useful catalyst for rechargeable Li-O-2 cells.