965 resultados para Machine-tool industry
Resumo:
Mottling is one of the key defects in offset-printing. Mottling can be defined as unwanted unevenness of print. In this work, diameter of a mottle spot is defined between 0.5-10.0 mm. There are several types of mottling, but the reason behind the problem is still not fully understood. Several commercial machine vision products for the evaluation of print unevenness have been presented. Two of these methods used in these products have been implemented in this thesis. The one is the cluster method and the other is the band-pass method. The properties of human vision system have been taken into account in the implementation of these two methods. An index produced by the cluster method is a weighted sum of the number of found spots, and an index produced by band-pass method is a weighted sum of coefficients of variations of gray-levels for each spatial band. Both methods produce larger indices for visually poor samples, so they can discern good samples from the poor ones. The difference between the indices for good and poor samples is slightly larger produced by the cluster method. 11 However, without the samples evaluated by human experts, the goodness of these results is still questionable. This comparison will be left to the next phase of the project.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Resumo:
PRINCIPLES: The literature has described opinion leaders not only as marketing tools of the pharmaceutical industry, but also as educators promoting good clinical practice. This qualitative study addresses the distinction between the opinion-leader-as-marketing-tool and the opinion-leader-as-educator, as it is revealed in the discourses of physicians and experts, focusing on the prescription of antidepressants. We explore the relational dynamic between physicians, opinion leaders and the pharmaceutical industry in an area of French-speaking Switzerland. METHODS: Qualitative content analysis of 24 semistructured interviews with physicians and local experts in psychopharmacology, complemented by direct observation of educational events led by the experts, which were all sponsored by various pharmaceutical companies. RESULTS: Both physicians and experts were critical of the pharmaceutical industry and its use of opinion leaders. Local experts, in contrast, were perceived by the physicians as critical of the industry and, therefore, as a legitimate source of information. Local experts did not consider themselves opinion leaders and argued that they remained intellectually independent from the industry. Field observations confirmed that local experts criticised the industry at continuing medical education events. CONCLUSIONS: Local experts were vocal critics of the industry, which nevertheless sponsor their continuing education. This critical attitude enhanced their credibility in the eyes of the prescribing physicians. We discuss how the experts, despite their critical attitude, might still be beneficial to the industry's interests.
Resumo:
The aim of this work is to design a flywheel generator for a diesel hybrid working machine. In this work we perform detailed design of a generator. Mobile machines are commonly used in industry: road building machines, three harvesting machines, boring machines, trucks and other equipment. These machines work with a hydraulic drive system. This system provides good service property and high technical level. Manufacturers of mobile machines tend to satisfy all requirements of customers and modernized drive system. In this work also a description of the frequency inverter is present. Power electronics system is one of the basic parts for structures perform in the project.
Resumo:
In the paper machine, it is not a desired feature for the boundary layer flows in the fabric and the roll surfaces to travel into the closing nips, creating overpressure. In this thesis, the aerodynamic behavior of the grooved roll and smooth rolls is compared in order to understand the nip flow phenomena, which is the main reason why vacuum and grooved roll constructions are designed. A common method to remove the boundary layer flow from the closing nip is to use the vacuum roll construction. The downside of the use of vacuum rolls is high operational costs due to pressure losses in the vacuum roll shell. The deep grooved roll has the same goal, to create a pressure difference over the paper web and keep the paper attached to the roll or fabric surface in the drying pocket of the paper machine. A literature review revealed that the aerodynamic functionality of the grooved roll is not very well known. In this thesis, the aerodynamic functionality of the grooved roll in interaction with a permeable or impermeable wall is studied by varying the groove properties. Computational fluid dynamics simulations are utilized as the research tool. The simulations have been performed with commercial fluid dynamics software, ANSYS Fluent. Simulation results made with 3- and 2-dimensional fluid dynamics models are compared to laboratory scale measurements. The measurements have been made with a grooved roll simulator designed for the research. The variables in the comparison are the paper or fabric wrap angle, surface velocities, groove geometry and wall permeability. Present-day computational and modeling resources limit grooved roll fluid dynamics simulations in the paper machine scale. Based on the analysis of the aerodynamic functionality of the grooved roll, a grooved roll simulation tool is proposed. The smooth roll simulations show that the closing nip pressure does not depend on the length of boundary layer development. The surface velocity increase affects the pressure distribution in the closing and opening nips. The 3D grooved roll model reveals the aerodynamic functionality of the grooved roll. With the optimal groove size it is possible to avoid closing nip overpressure and keep the web attached to the fabric surface in the area of the wrap angle. The groove flow friction and minor losses play a different role when the wrap angle is changed. The proposed 2D grooved roll simulation tool is able to replicate the grooved aerodynamic behavior with reasonable accuracy. A small wrap angle predicts the pressure distribution correctly with the chosen approach for calculating the groove friction losses. With a large wrap angle, the groove friction loss shows too large pressure gradients, and the way of calculating the air flow friction losses in the groove has to be reconsidered. The aerodynamic functionality of the grooved roll is based on minor and viscous losses in the closing and opening nips as well as in the grooves. The proposed 2D grooved roll model is a simplification in order to reduce computational and modeling efforts. The simulation tool makes it possible to simulate complex paper machine constructions in the paper machine scale. In order to use the grooved roll as a replacement for the vacuum roll, the grooved roll properties have to be considered on the basis of the web handling application.
Resumo:
An optimization tool has been developed to help companies to optimize their production cycles and thus improve their overall supply chain management processes. The application combines the functionality that traditional APS (Advanced Planning System) and ARP (Automatic Replenishment Program) systems provide into one optimization run. A qualitative study was organized to investigate opportunities to expand the product’s market base. Twelve personal interviews were conducted and the results were collected in industry specific production planning analyses. Five process industries were analyzed to identify the product’s suitability to each industry sector and the most important product development areas. Based on the research the paper and the plastic film industries remain the most potential industry sectors at this point. To be successful in other industry sectors some product enhancements would be required, including capabilities to optimize multiple sequential and parallel production cycles, handle sequencing of complex finishing operations and to include master planning capabilities to support overall supply chain optimization. In product sales and marketing processes the key to success is to find and reach the people who are involved directly with the problems that the optimization tool can help to solve.
Resumo:
The environmental challenges of plastic packaging industry have increased remarkably along with climate change debate. The interest to study carbon footprints of packaging has increased in packaging industry to find out the real climate change impacts of packaging. In this thesis the greenhouse gas discharges of plastic packaging during their life cycle is examined. The carbon footprint is calculated for food packaging manufactured from plastic laminate. The structure of the laminate is low density polyethylene (PE-LD) and oriented polypropylene (OPP), which have been joined together with laminating adhesive. The purpose is to find out the possibilities to create a carbon footprint calculating tool for plastic packaging and its usability in a plastic packaging manufacturing company. As a carbon footprint calculating method PAS 2050 standard has been used. In the calculations direct and indirect greenhouse gas discharges as well as avoided discharges are considered. Avoided discharges are born for example in packaging waste utilization as energy. The results of the calculations have been used to create a simple calculating tool to be used for similar laminate structures. Although the utilization of the calculating tool is limited to one manufacturing plant because the primary activity data is dependent of geographical location and for example the discharges of used energy in the plant. The results give an approximation of the climate change potential caused by the laminate. It is although noticed that calculations do not include all environmental impacts of plastic packaging´s life cycle.
Resumo:
The topic of this thesis is the simulation of a combination of several control and data assimilation methods, meant to be used for controlling the quality of paper in a paper machine. Paper making is a very complex process and the information obtained from the web is sparse. A paper web scanner can only measure a zig zag path on the web. An assimilation method is needed to process estimates for Machine Direction (MD) and Cross Direction (CD) profiles of the web. Quality control is based on these measurements. There is an increasing need for intelligent methods to assist in data assimilation. The target of this thesis is to study how such intelligent assimilation methods are affecting paper web quality. This work is based on a paper web simulator, which has been developed in the TEKES funded MASI NoTes project. The simulator is a valuable tool in comparing different assimilation methods. The thesis contains the comparison of four different assimilation methods. These data assimilation methods are a first order Bayesian model estimator, an ARMA model based on a higher order Bayesian estimator, a Fourier transform based Kalman filter estimator and a simple block estimator. The last one can be considered to be close to current operational methods. From these methods Bayesian, ARMA and Kalman all seem to have advantages over the commercial one. The Kalman and ARMA estimators seems to be best in overall performance.
Resumo:
This study presents the information required to describe the machine and device resources in the turret punch press environment which are needed for the development of the analysing method for automated production. The description of product and device resources and their interconnectedness is the starting point for method comparison the development of expenses, production planning and the performance of optimisation. The manufacturing method cannot be optimized unless the variables and their interdependence are known. Sheet metal parts in particular may then become remarkably complex, and their automatic manufacture may be difficult or, with some automatic equipment, even impossible if not know manufacturing properties. This thesis consists of three main elements, which constitute the triangulation. In the first phase of triangulation, the manufacture occuring on a turret punch press is examined in order to find the factors that affect the efficiency of production. In the second phase of triangulation, the manufacturability of products on turret punch presses is examined through a set of laboratory tests. The third phase oftriangulation involves an examination of five industry parts. The main key findings of this study are: all possible efficiency in high automation level machining cannot be achieved unless the raw materials used in production and the dependencies of the machine and tools are well known. Machine-specific manufacturability factors for turret punch presses were not taken into account in the industrial case samples. On the grounds of the performed tests and industrial case samples, the designer of a sheet metal product can directly influence the machining time, material loss, energy consumption and the number of tools required on a turret punch press by making decisions in the way presented in the hypothesis of thisstudy. The sheet metal parts to be produced can be optimised to bemanufactured on a turret punch press when the material to be used and the kinds of machine and tool options available are known. This provides in-depth knowledge of the machine and tool properties machine and tool-specifically. None of the optimisation starting points described here is a separate entity; instead, they are all connected to each other.
Resumo:
The aim of this thesis is to utilize the technology developed at LUT and to provide an easy tool for high-speed solid-rotor induction machine preliminary design. Computer aided design tool MathCAD has been chosen as the environment for realizing the calculation program. Four versions of the design program have been made depending on the motor rotor type. The first rotor type is an axially slitted solid-rotor with steel end rings. The next one is an axially slitted solid-rotor with copper end rings. The third machine type is a solid rotor with deep, rectangular copper bars and end rings (squirrel cage). And the last one is a solid-rotor with round copper bars and end rings (squirrel cage). Each type of rotor has its own specialties but a general thread of design is common. This paper follows the structure of the calculating program and explains some features and formulas. The attention is concentrated on the difference between laminated and solid-rotor machine design principles. There is no deep analysis of the calculation ways are presented. References for all solution methods appearing during the design procedure are given for more detailed studying. This thesis pays respect to the latest innovations in solid-rotor machines theory. Rotor ends’ analytical calculation follows the latest knowledge in this field. Correction factor for adjusting the rotor impedance is implemented. The purpose of the created design program is to calculate the preliminary dimensions of the machine according to initial data. Obtained results are not recommended for exact machine development. Further more detailed design should be done in a finite element method application. Hence, this thesis is a practical tool for the prior evaluating of the high-speed machine with different solid-rotor types parameters.
Resumo:
Environmental accountability has become a major source of competitive advantage for industrial companies, because customers consider it as relevant buying criterion. However, in order to leverage their environmental responsibility, industrial suppliers have to be able to demonstrate the environmental value of their products and services, which is also the aim of Kemira, a global water chemistry company considered in this study. The aim of this thesis is to develop a tool which Kemira can use to assess the environmental value of their solutions for the customer companies in mining industry. This study answers to questions on what kinds of methods to assess environmental impacts exist, and what kind of tool could be used to assess the environmental value of Kemira’s water treatment solutions. The environmental impacts of mining activities vary greatly between different mines. Generally the major impacts include the water related issues and wastes. Energy consumption is also a significant environmental aspect. Water related issues include water consumption and impacts in water quality. There are several methods to assess environmental impacts, for example life cycle assessment, eco-efficiency tools, footprint calculations and process simulation. In addition the corresponding financial value may be estimated utilizing monetary assessment methods. Some of the industrial companies considered in the analysis of industry best practices use environmental and sustainability assessments. Based on the theoretical research and conducted interviews, an Excel based tool utilizing reference data on previous customer cases and customer specific test results was considered to be most suitable to assess the environmental value of Kemira’s solutions. The tool can be used to demonstrate the functionality of Kemira’s solutions in customers’ processes, their impacts in other process parameters and their environmental and financial aspects. In the future, the tool may be applied to fit also Kemira’s other segments, not only mining industry.
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
The requirements set by the market for electrical machines become increasingly demanding requiring more sophisticated technological solutions. Companies producing electrical ma-chines are challenged to develop machines that provide competitive edge for the customer for example through increased efficiency, reliability or some customer specific special requirement. The objective of this thesis is to derive a proposal for the first steps to transform the electrical machine product development process of a manufacturing company towards lean product development. The current product development process in the company is presented together with the processes of four other companies interviewed for the thesis. On the basis of current processes of the electrical machine industry and the related literature, a generalized electrical machine product development process is derived. The management isms and –tools utilized by the companies are analyzed. Adoption of lean Pull-Event –reviews, Oobeya –management and Knowledge based product development are suggested as the initial steps of implementing lean product development paradigm in the manufacturing company. Proposals for refining the cur-rent product development process and increasing the stakeholder involvement in the development projects are made. Lean product development is finding its way to Finnish electrical machine industry, but the results will be available only after the methods have been implemented and adopted by the companies. There is some enthusiasm about the benefits of lean approach and if executed successfully it will provide competitive edge for the Finnish electrical machine industry.
Resumo:
Pumping systems account for over 20 % of all electricity consumption in European industry. Optimization and correct design of such systems is important and there is a reasonable amount of unrealized energy saving potential in old pumping systems. The energy efficiency and therefore also the energy consumption of a pumping system heavily depends on the correct dimensioning and selection of devices. In this work, a graphical optimization tool for pumping systems is developed in Matlab programming language. The tool selects optimal pump, electrical motor and frequency converter for existing pumping process and calculates the life cycle costs of the whole system. The tool could be used as an aid when choosing the machinery and to analyze the energy consumption of existing systems. Results given by the tool are compared to the results of laboratory tests. The selection of pump and motor works reasonably well, but the frequency converter selection still needs development