934 resultados para METALLIC STENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several experimental studies have shown that fracture surfaces in brittle metallic glasses (MGs) generally exhibit nanoscale corrugations which may be attributed to the nucleation and coalescence of nanovoids during crack propagation. Recent atomistic simulations suggest that this phenomenon is due to large spatial fluctuations in material properties in a brittle MG, which leads to void nucleation in regions of low atomic density and then catastrophic fracture through void coalescence. To explain this behavior, we propose a model of a heterogeneous solid containing a distribution of weak zones to represent a brittle MG. Plane strain continuum finite element analysis of cavitation in such an elastic-plastic solid is performed with the weak zones idealized as periodically distributed regions having lower yield strength than the background material. It is found that the presence of weak zones can significantly reduce the critical hydrostatic stress for the onset of cavitation which is controlled uniquely by the local yield properties of these zones. Also, the presence of weak zones diminishes the sensitivity of the cavitation stress to the volume fraction of a preexisting void. These results provide plausible explanations for the observations reported in recent atomistic simulations of brittle MGs. An analytical solution for a composite, incompressible elastic-plastic solid with a weak inner core is used to investigate the effect of volume fraction and yield strength of the core on the nature of cavitation bifurcation. It is shown that snap-cavitation may occur, giving rise to sudden formation of voids with finite size, which does not happen in a homogeneous plastic solid. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report thermopower (S) and electrical resistivity (rho (2DES) ) measurements in low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temperatures a parts per thousand(2)0.7 K a linearly growing S as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: (i) the magnitude of S exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and (ii) rho (2DES) in this regime is two orders of magnitude greater than the quantum of resistance h/e (2) and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, rho (2DES) and S show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent past conventional Spin Valve (SV) structures are gaining growing interest over Tunneling Magneto-resistance (TMR) because of its preference due to low RA product in hard disc read head sensor applications. Pulsed Laser Deposited (PLD) SV and Pseudo Spin Valve (PSV) samples are grown at room temperature with moderately high MR values using simple FM/NM/FM/AFM structure. Although PLD is not a popular technique to grow metallic SVs because of expected large intermixing of the interfaces, particulate formation, still by suitably adjusting the deposition parameters we could get exchange bias (EB) as well as 2-3% MR of these SVs in the Current In Plane (CIP) geometry. Exchange Bias, which sets in even without applying magnetic field during deposition observed by using SQUID magnetometry as well as by MR measurements. Angular variation of the MR reveals four-fold anisotropy of the hard layer (Co) which becomes two-fold in presence of an adjacent AFM layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anelastic and viscoplastic characteristics of Cu50Zr50 and Cu65Zr35 binary bulk metallic glasses at room temperature were examined through nanoindentation creep experiments. Results show that both the deformations are relatively more pronounced in Cu50Zr50 than in Cu65Zr35, and their amount increases with the loading rate. The results are analyzed in terms of the influences of structural defects and loading rate on the room temperature indentation creep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate in a simple model the surprising result that turning on an on-site Coulomb interaction U in a doped band insulator leads to the formation of a half-metallic state. In the undoped system, we show that increasing U leads to a first order transition at a finite value U-AF between a paramagnetic band insulator and an antiferomagnetic Mott insulator. Upon doping, the system exhibits half-metallic ferrimagnetism over a wide range of doping and interaction strengths on either side of U-AF. Our results, based on dynamical mean field theory, suggest a new route to half metallicity, and will hopefully motivate searches for new materials for spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-stranded DNA (ss-DNA) oligomers (dA(20), d(C(3)TA(2))(3)C-3] or dT(20)) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA(20) takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d(C(3)TA(2))(3)C-3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at similar to 90 degrees C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in nanotechnology have paved ways to various techniques for designing and fabricating novel nanostructures incorporating noble metal nanoparticles, for a wide range of applications. The interaction of light with metal nanoparticles (NPs) can generate strongly localized electromagnetic fields (Localized Surface Plasmon Resonance, LSPR) at certain wavelengths of the incident beam. In assemblies or structures where the nanoparticles are placed in close proximity, the plasmons of individual metallic NPs can be strongly coupled to each other via Coulomb interactions. By arranging the metallic NPs in a chiral (e.g. helical) geometry, it is possible to induce collective excitations, which lead to differential optical response of the structures to right-and left circularly polarized light (e.g. Circular Dichroism - CD). Earlier reports in this field include novel techniques of synthesizing metallic nanoparticles on biological helical templates made from DNA, proteins etc. In the present work, we have developed new ways of fabricating chiral complexes made of metallic NPs, which demonstrate a very strong chiro-optical response in the visible region of the electromagnetic spectrum. Using DDA (Discrete Dipole Approximation) simulations, we theoretically studied the conditions responsible for large and broadband chiro-optical response. This system may be used for various applications, for example those related to polarization control of visible light, sensing of proteins and other chiral bio-molecules, and many more.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at similar to 19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressure-tuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrophobic/superhydrophobic metallic surfaces prepared via chemical treatment are encountered in many industrial scenarios involving the impingement of spray droplets. The effectiveness of such surfaces is understood through the analysis of droplet impact experiments. In the present study, three target surfaces with aluminum (Al-6061) as base material-acid-etched, Octadecyl Trichloro Silane (OTS) coated, and acid-etched plus OTS-coated-were prepared. Experiments on the impact of inertia dominated water drops on these chemically modified aluminum surfaces were carried out with the objective to highlight the effect of chemical treatment on the target surfaces on key sub-processes occurring in drop impact phenomenon. High speed videos of the entire drop impact dynamics were captured at three Weber number (We) conditions representative of high We (We > 200) regime. During the early stages of drop spreading, the drop impact resulted in ejection of secondary droplets from spreading drop front on the etched surfaces resembling prompt splash on rough surfaces whereas no such splashing was observable on untreated aluminum surface. Prominent development of undulations (fingers) were observed at the rim of drop spreading on the etched surfaces; between the etched surfaces the OTS-coated surface showed a subdued development of fingers than the uncoated surface. The impacted drops showed intense receding on OTS-coated surfaces whereas on the etched surface a highly irregular receding, with drop liquid sticking to the surface, was observed. Quantitative analyses were performed to reveal the effect of target surface characteristics on drop impact parameters such as temporal variation of spread factor of drop lamella, temporal variation of average finger length during spreading phase, maximum drop spreading, time taken to attain maximum spreading, sensitivity of maximum spreading to We, number of fingers at maximum spreading, and average receding velocity of drop lamella. Existing models for maximum drop spreading showed reasonably good agreement with the experimental measurements on the target surfaces except the acid-etched surface. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of hydrogen (H) charging on the shear yield strength (tau(max)) and shear transformation zone volume (Omega) of Ni-Nb-Zr metallic glass ribbons, with varying Zr content, were studied through the first pop-in loads during nanoindentation. Weight gain measurements after H charging and desorption studies were utilized to identify how the total H absorbed during charging is partitioned into mobile and immobile (or trapped) parts. These, in turn, indicate the significant role of H mobility in the amorphous structure on the yielding behavior. In high-Zr alloys, tau(max) increases significantly whereas Omega decreases. In low-Zr alloys, a slight decrease in tau(max) and increase in Omega were noted. These experimental observations are rationalized in terms of the mobility of the absorbed H in the amorphous structure and the possible role of it in the shear transformation zone dynamics during deformation of the metallic glass. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode I fracture experiments were conducted on brittle bulk metallic glass (BMG) samples and the fracture surface features were analyzed in detail to understand the underlying physical processes. Wollner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity is similar to 800 m s(-1), which corresponds to similar to 0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny-shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs is stress-controlled and occurs through hydrostatic stress-assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of similar to 79 nm. Juxtaposition of the crack velocity with this spacing suggests that the crack takes similar to 10(-10) s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, is utilized to critically discuss possible causes for the nanocorrugation formation. Taylor's fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effect of topological as well as lattice vacancy defects on the electro-thermal transport properties of the metallic zigzag graphene nano ribbons at their ballistic limit. We employ the density function theory-Non equilibrium green's function combination to calculate the transmission details. We then present an elaborated study considering the variation in the electrical current and the heat current transport with the change in temperature as well as the voltage gradient across the nano ribbons. The comparative analysis shows, that in the case of topological defects, such as the Stone-Wales defect, the electrical current transport is minimum. Besides, for the voltage gradient of 0.5 Volt and the temperature gradient of 300 K, the heat current transport reduces by similar to 62 % and similar to 50% for the cases of Stones-Wales defect and lattice vacancy defect respectively, compared to that of the perfect one.