913 resultados para Lti-like cells
Resumo:
Background Despite a revived interest in fat grafting procedures, clinicians still fail to demonstrate clearly the in vivo behavior of fat grafts as a dynamic tissue substitute. However, the basic principles in cellular biology teach us that cells can survive and develop, provided that a structural matrix exists that directs their behavior. The purpose of this in vitro study was to analyze that behavior of crude fat grafts, cultured on a three-dimensional laminin-rich matrix. Methods Nonprocessed, human fat biopsy specimens (approximately 1 mm) were inoculated on Matrigel-coated wells to which culture medium was added. The control group consisted of fat biopsy specimens embedded in medium alone. The cellular proliferation pattern was followed over 6 weeks. Additional cultures of primary generated cellular spheroids were performed and eventually subjected to adipogenic differentiation media. Results A progressive outgrowth of fibroblast-like cells from the core fat biopsy specimen was observed in both groups. Within the Matrigel group, an interconnecting three-dimensional network of spindle-shaped cells was established. This new cell colony reproduced spheroids that functioned again as solitary sources of cellular proliferation. Addition of differentiation media resulted in lipid droplet deposition in the majority of generated cells, indicating the initial steps of adipogenic differentiation. Conclusions The authors noticed that crude, nonprocessed fat biopsy specimens do have considerable potential for future tissue engineering-based applications, provided that the basic principles of developmental, cellular biology are respected. Spontaneous in vitro expansion of the stromal cells present in fat grafts within autologous and injectable matrices could create "off-the-shelf" therapies for reconstructive procedures.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
Background Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. Methods The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Results Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. Conclusions The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.
Resumo:
Abstract. We have used chlortetracycline (CTC) as a fluorescent probe to detect the distribution of sequestered calcium in multicellular stages of Dictyostelium discoideum. Tips of late aggregates, slugs and early culminating masses fluoresce very strongly. Most of the fluorescence is intracellular in origin and emanates from a small number of intense punctate sources. The sources correspond in part to autophagic vacuoles viz. neutral-red staining, acidic digestive vesicles, and may also include intracellular organelles; cytoplasmic fluorescence is much weaker in comparison. The level of fluorescence drops in the middle portion of slugs and rises again in the posteriormost region, though not to as high a level as in the tip. This holds good irrespective of whether CTC is applied only in the neighbourhood of the aggregate centre, only in the aggregate periphery, or to the whole aggregate. We infer that there must be a good deal of mixing in the stages leading from aggregation to slug formation; thus the serial order in which cells enter an aggregate does not bear any relation to their ultimate fates. The other implication of our study is that calcium sequestration is much more extensive in prestalk and anterior-like cells than in prespore cells. These findings are discussed with regard to possible implications for pattern formation.
Resumo:
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The coinhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PDL1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcmlike cells. © 2015 Blake et al.
Resumo:
P>Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types-presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku (triA) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA- mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA- background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum, this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.
Resumo:
Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Hydroxyapatite (HA)-based biocomposites have been widely investigated for a multitude of applications and these studies have been largely driven to improve mechanical properties (toughness and strength) without compromising cytocompatibility properties. Apart from routine cell viability/proliferation analysis, limited efforts have been made to quantify the fate processes (cell proliferation, cell cycle, and cell apoptosis) of human fetal osteoblast (hFOB) cells on HA-based composites, in vitro. In this work, the osteoblast cell fate process has been studied on a model hydroxyapatite-titanium (HA-Ti) system using the flow cytometry. In order to retain both HA and Ti, the novel processing technique, that is, spark plasma sintering, was suitably adopted. The cell fate processes of hFOBs, as evaluated using a flow cytometry, revealed statistically insignificant differences among HA-10 wt % Ti and HA and control (tissue culture polystyrene surface) in terms of osteoblast apoptosis, proliferation index as well as division index. For the first time, we provide quantified flow cytometry results to demonstrate that 10 wt % Ti additions to HA do not have any significant influence on the fate processes of human osteoblast-like cells, in vitro.
Resumo:
The mechanism of fatigue crack nucleation for nanocrystalline (nc) nickel was experimentally investigated in this paper. The samples of electrodeposited ne nickel were loaded cyclically by using a three point bending instrument at first. Then, atomic force microscopy (AFM) was used to scanning the sample surface after fatigue testing. The results indicated that, after fatigue testing, there are vortex-like cells with an average size of 108nm appeared along the crack on nc nickel sample. And, the roughness of sample surface increased with the maximum stress at the surface.
Resumo:
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-beta 3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.
Resumo:
In observation of in vitro phagocytic activity against Aeromonas hydrophila isolate 34k (a virulent form) and Escherichia coli (an avirulent bacteria) of neutrophil- and monocyte-like cells of walking catfish Clarias batrachus showed phagocytosis. N eutrophils and monocytes phagocytized the avirulent form of bacterial isolate more than the virulent one. Other blood leucocytes did not show phagocytosis. Peritoneal macrophage of the fish were separated by glycogen elicitation and the macrophages were being adhered on plastic cover slips for studying their in vitro phagocytic activity. Most of the cells were alive after adherence and showed phagocytosis against the virulent and avirulent bacteria. The percent phagocytosis and phagocytic index were higher against the avirulent E. coli than the virulent A. hydrophila.
Resumo:
采用分阶段诱导方法模拟肝细胞体内发育,建立体外诱导猕猴胚胎干细胞(rhesus monkey embryonic stem cells,rESCs)分化为成熟肝细胞的体系,对研究以ES细胞为基础的临床替代治疗人类晚期肝脏疾病具有重要的意义.将rESCs团块在含有10%FBS的DMEM培养基中悬浮培养11d,形成含有早期内胚层细胞的拟胚体(embryonic bodies,EB)并开始表达早期肝细胞的部分基因或蛋白,将11日龄EB接种至包被有ECM的组织培养皿,分阶段加入aFGF、BMP-4及OSM.经aFGF和BMP-4诱导7~10d后,分化细胞形态变为具有双核的多角形细胞,表达早期和中期肝细胞特异性的蛋白(AFP、ALB及CK18)和基因(AFP、ALB、APOH,G-6-P及TAT),并具有储存糖原的功能.撤除aFGF和BMP-4,添加OSM继续诱导7~10 d,分化的细胞表达成熟肝细胞所特有基因CYP1B1和ADH1C,并具有摄取靛青绿的能力.
Resumo:
CD83 is a transmembrane glycoprotein of the immunoglobulin (Ig) superfamily and a surface marker for fully matured dendritic cells (DCs) in humans and mice. In teleosts, DC-like cells and their molecular markers are largely unknown. In this report, we described the identification and expressional analysis of a CD83 homologue, SmCD83, from turbot Scophthalmus maximus. The open reading frame of SmCD83 is 639 bp, which is preceded by a S'-untranslated region (UTR) of 87 bp and followed by a 3'-UTR of 1111 bp. The SmCD83 gene is 4716 bp in length, which contains five exons and four introns. The deduced amino acid sequence of SmCD83 shares 40-50% overall identities with the CD83 of several fish species. Like typical CD83, SmCD83 possesses an Ig-like extracellular domain, a transmembrane domain, and a cytoplasmic domain. The conserved disulfide bond-forming cysteine residues and the N-linked glycosylation sites that are preserved in CD83 are also found in SmCD83. Expressional analysis showed that constitutive expression of SmCD83 was high in gill, blood, spleen, muscle, and kidney and low in heart and liver. Bacterial infection and poly(I:C) treatment enhanced SmCD83 expression in kidney in time-dependent manners. Likewise, bacterial challenge caused significant induction of SmCD83 expression in cultured macrophages. Vaccination of turbot with a bacterin and a purified recombinant subunit vaccine-induced significant SmCD83 expression during the first week following vaccination. These results demonstrate that SmCD83 expression correlates with microbial challenge and antigen stimulation, which suggests the possibility that there may exist in turbot DC-like antigen-presenting cells that express SmCD83 upon activation by antigen uptake. In addition, these results also suggest that SmCD83 may serve as a marker for activated macrophages in turbot. (C) 2010 Elsevier Ltd. All rights reserved.