968 resultados para Light-emitting diodes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows a comparative study of organic light emitting diodes based on four different europium complexes with the general formula, Eu(CLs)(3)bipyridine, where the central ligands are DBM [tris(dibenzoylmethane)], TTA [tris(1-(2-thieneyl)-4,4,4-trifluoro-1,3-butanedione)], NTA [tris(1-(2-naphthoyl)-3,3,3-trifluoroacetone)] and BTA [tris(1-(2-benzoyl)-3,3,3-trifluoroacetone)]. All devices have a driving voltage of 14-16 V, a very low electrical current at normal operation (less than 1 mA) and a good Wall Plug Efficiency (up to near 10(-3)%). The most suitable central ligand was found to be DBM, with an optical power up to 200 nW (at 612 nm). The BTA exhibits the lowest stability under high applied voltages. The other central ligands have similar results among them. The electroluminescence spectra clearly show the europium ion transitions (with a strong (5)D(0) -> (7)F(2) line) with a CIE color coordinate around (0.56, 0.34). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows the luminescence properties of a rare-earth organic complex, the Tb(ACAC)(3)phen. The results show the (5)D(4)->(7)F(3,4,5,6) transitions with no influence of the ligand. The photoluminescence excitation spectrum is tentatively interpreted by the ligands absorption. An organic light emitting diode (CLED) was made by thermal evaporation using TPD (N,N`-bis(3-methylphenyl)N,N`-diphenylbenzidine) and Alq3 (aluminum-tris(8-hydroxyquinoline)) as hole and electron transport layers, respectively. The emission reproduces the photoluminescence spectrum of the terbium complex at room temperature, with Commission Internationale de l`Eclairage - CIE (x,y) color coordinates of (0.28,0.55). No presence of any bands from the ligands was observed. The potential use of this compound in efficient devices is discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, two ruthenium complexes, [Ru(bpy)(3)](PF6)(2) and [Ru(ph2phcn)(3)](PF6)(2) in poly(inethylinethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 rim and CIE (x, y) color coordinates of (0.64, 0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the [Ru(bpy)(3)](PF6)(2) device where the optical output power approaches 10 mu W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. The devices are driven under pulsed operation up to 1300 A/cm2 without traces of efficiency droop. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes a novel spectral LED-based tunable light source used for customized lighting solutions, especially for the reconstruction of CIE (Commission Internationale de l’Éclairage) standard illuminants. The light source comprises 31 spectral bands ranging from 400 to 700 nm, an integrating cube and a control board with a 16-bit resolution. A minimization algorithm to calculate the weighting values for each channel was applied to reproduce illuminants with precision. The differences in spectral fitting and colorimetric parameters showed that the reconstructed spectra were comparable to the standard, especially for the D65, D50, A and E illuminants. Accurate results were also obtained for illuminants with narrow peaks such as fluorescents (F2 and F11) and a high-pressure sodium lamp (HP1). In conclusion, the developed spectral LED-based light source and the minimization algorithm are able to reproduce any CIE standard illuminants with a high spectral and colorimetric accuracy able to advance available custom lighting systems useful in the industry and other fields such as museum lighting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic microcavity light emitting diodes typically exhibit a blue shift of the emitting wavelength with increasing viewing angle. While the wavelength shift can be reduced with the appropriate choice of organic materials and metal mirrors, for further reduction of the emission wavelength shift it is necessary to consider a mirror whose phase shift can partly compensate the effect of the change of optical path within the cavity. In this work, we used a genetic algorithm (GA) to design an asymmetric Bragg mirror in order to minimize the emission wavelength shift with viewing angle. Based on simulation results, the use of asymmetric Bragg mirrors represents a promising way to reduce the emission wavelength shift. Detailed comparison between GA optimized and conventional Bragg mirrors in terms of resonant wavelength dependence on the viewing angle, spectral narrowing, and brightness enhancement is given. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal quantum efficiency (IQE) of a blue high-brightness InGaN/GaN light-emitting diode (LED) was evaluated from the external quantum efficiency measured as a function of current at various temperatures ranged between 13 and 440 K. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined the temperature-dependent IQE of the LED structure and light extraction efficiency of the LED chip. Separate evaluation of these parameters is helpful for further optimization of the heterostructure and chip designs. The data obtained enable making a guess on the temperature dependence of the radiative and Auger recombination coefficients, which may be important for identification of dominant mechanisms responsible for the efficiency droop in III-nitride LEDs. Thermal degradation of the LED performance in terms of the emission efficiency is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ∼430 nm grown simultaneously on a high-cost small-size bulk semipolar (11 2 - 2) GaN substrate (Bulk-GaN) and a low-cost large-size (11 2 - 2) GaN template created on patterned (10 1 - 2) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ∼ and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ∼2 × 108cm-2 and BSF density of ∼1 × 103cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution-grown colloidal nanocrystal (NC) materials represent ideal candidates for optoelectronic devices, due to the flexibility with which they can be synthesized, the ease with which they can be processed for devicefabrication purposes and, foremost, for their excellent and size-dependent tunable optical properties, such as high photoluminescence (PL) quantum yield, color purity, and broad absorption spectra up to the near infrared. The advent of surfactant-assisted synthesis of thermodynamically stable colloidal solutions of NCs has led to peerless results in terms of uniform size distribution, composition, rational shape-design and the possibility of building heterostructured NCs (HNCs) comprising two or more different materials joined together. By tailoring the composition, shape and size of each component, HNCs with gradually higher levels of complexity have been conceived and realized, which are endowed with outstanding characteristics and optoelectronic properties. In this review, we discuss recent advances in the design of HNCs for efficient light-emitting diodes (LEDs) and photovoltaic (PV) solar cell devices. In particular, we will focus on the materials required to obtain superior optoelectronic quality and efficient devices, as well as their preparation and processing potential and limitations