903 resultados para Layer Interfaces
Resumo:
We investigate nematic wetting and filling transitions of crenellated surfaces (rectangular gratings) by numerical minimization of the Landau-de Gennes free energy as a function of the anchoring strength, for a wide range of the surface geometrical parameters: depth, width, and separation of the crenels. We have found a rich phase behavior that depends in detail on the combination of the surface parameters. By comparison to simple fluids, which undergo a continuous filling or unbending transition, where the surface changes from a dry to a filled state, followed by a wetting or unbinding transition, where the thickness of the adsorbed fluid becomes macroscopic and the interface unbinds from the surface, nematics at crenellated surfaces reveal an intriguingly rich behavior: in shallow crenels only wetting is observed, while in deep crenels, only filling transitions occur; for intermediate surface geometrical parameters, a new class of filled states is found, characterized by bent isotropic-nematic interfaces, which persist for surfaces structured on large scales, compared to the nematic correlation length. The global phase diagram displays two wet and four filled states, all separated by first-order transitions. For crenels in the intermediate regime re-entrant filling transitions driven by the anchoring strength are observed.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.
Resumo:
Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ◦C has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ◦C has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ◦C has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ◦C substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Engenharia Informática
Resumo:
We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG200 and N-acetyl-l-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.
Resumo:
We present measurements and numerical simulation of a-Si:H p-i-n detectors with a wide range of intrinsic layer thickness between 2 and 10 pm. Such a large active layer thickness is required in applications like elementary particle detectors or X-ray detectors. For large thickness and depending on the applied bias, we observe a sharp peak in the spectral response in the red region near 700 nm. Simulation results obtained with the program ASCA are in agreement with the measurement and permit the explanation of the experimental data. In thick samples holes recombine or are trapped before reaching the contacts, and the conduction mechanism is fully electron dominated. As a consequence, the peak position in the spectral response is located near the optical band gap of the a-Si:H i-layer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Paper and thin layer chromatography methods are frequently used in Classic Nuclear Medicine for the determination of radiochemical purity (RCP) on radiopharmaceutical preparations. An aliquot of the radiopharmaceutical to be tested is spotted at the origin of a chromatographic strip (stationary phase), which in turn is placed in a chromatographic chamber in order to separate and quantify radiochemical species present in the radiopharmaceutical preparation. There are several methods for the RCP measurement, based on the use of equipment as dose calibrators, well scintillation counters, radiochromatografic scanners and gamma cameras. The purpose of this study was to compare these quantification methods for the determination of RCP. Material and Methods: 99mTc-Tetrofosmin and 99mTc-HDP are the radiopharmaceuticals chosen to serve as the basis for this study. For the determination of RCP of 99mTc-Tetrofosmin we used ITLC-SG (2.5 x 10 cm) and 2-butanone (99mTc-tetrofosmin Rf = 0.55, 99mTcO4- Rf = 1.0, other labeled impurities 99mTc-RH RF = 0.0). For the determination of RCP of 99mTc-HDP, Whatman 31ET and acetone was used (99mTc-HDP Rf = 0.0, 99mTcO4- Rf = 1.0, other labeled impurities RF = 0.0). After the development of the solvent front, the strips were allowed to dry and then imaged on the gamma camera (256x256 matrix; zoom 2; LEHR parallel-hole collimator; 5-minute image) and on the radiochromatogram scanner. Then, strips were cut in Rf 0.8 in the case of 99mTc-tetrofosmin and Rf 0.5 in the case of 99mTc-HDP. The resultant pieces were smashed in an assay tube (to minimize the effect of counting geometry) and counted in the dose calibrator and in the well scintillation counter (during 1 minute). The RCP was calculated using the formula: % 99mTc-Complex = [(99mTc-Complex) / (Total amount of 99mTc-labeled species)] x 100. Statistical analysis was done using the test of hypotheses for the difference between means in independent samples. Results:The gamma camera based method demonstrated higher operator-dependency (especially concerning the drawing of the ROIs) and the measures obtained using the dose calibrator are very sensitive to the amount of activity spotted in the chromatographic strip, so the use of a minimum of 3.7 MBq activity is essential to minimize quantification errors. Radiochromatographic scanner and well scintillation counter showed concordant results and demonstrated the higher level of precision. Conclusions: Radiochromatographic scanners and well scintillation counters based methods demonstrate to be the most accurate and less operator-dependant methods.
Resumo:
A educação é uma área bastante importante no desenvolvimento humano e tem vindo a adaptar-se às novas tecnologias. Tentam-se encontrar novas maneiras de ensinar de modo a obter um rendimento cada vez maior na aprendizagem das pessoas. Com o aparecimento de novas tecnologias como os computadores e a Internet, a concepção de aplicações digitais educativas cresceu e a necessidade de instruir cada vez melhor os alunos leva a que estas aplicações precisem de um interface que consiga leccionar de uma maneira rápida e eficiente. A combinação entre o ensino com o auxílio dessas novas tecnologias e a educação à distância deu origem ao e-Learning (ensino à distância). Através do ensino à distância, as possibilidades de aumento de conhecimento dos alunos aumentaram e a informação necessária tornou-se disponível a qualquer hora em qualquer lugar com acesso à Internet. Mas os cursos criados online tinham custos altos e levavam muito tempo a preparar o que gerou um problema para quem os criava. Para recuperar o investimento realizado decidiu-se dividir os conteúdos em módulos capazes de serem reaproveitados em diferentes contextos e diferentes tipos de utilizadores. Estes conteúdos modulares foram denominados Objectos de Aprendizagem. Nesta tese, é abordado o estudo dos Objectos de Aprendizagem e a sua evolução ao longo dos tempos em termos de interface com o utilizador. A concepção de um interface que seja natural e simples de utilizar nem sempre é fácil e independentemente do contexto em que se insere, requer algum conhecimento de regras que façam com que o utilizador que use determinada aplicação consiga trabalhar com um mínimo de desempenho. Na concepção de Objectos de Aprendizagem, áreas de complexidade elevada como a Medicina levam a que professores ou doutores sintam alguma dificuldade em criar um interface com conteúdos educativos capaz de ensinar com eficiência os alunos, devido ao facto de grande parte deles desconhecerem as técnicas e regras que levam ao desenvolvimento de um interface de uma aplicação. Através do estudo dessas regras e estilos de interacção torna-se mais fácil a criação de um bom interface e ao longo desta tese será estudado e proposto uma ferramenta que ajude tanto na criação de Objectos de Aprendizagem como na concepção do respectivo interface.
Resumo:
Os laboratórios de experimentação remota estão normalmente associados a tecnologias ou soluções proprietárias, as quais restringem a sua utilização a determinadas plataformas e obrigam ao uso de software específico no lado do cliente. O ISEP possui um laboratório de experimentação remota, baseado em instrumentação virtual, usado no apoio ao ensino da electrónica e construído sobre uma plataforma NIELVIS da National Instruments. O software de controlo da plataforma recorre à linguagem gráfica de programação LabVIEW. Esta é uma ferramenta desenvolvida pela National Instruments que facilita o desenvolvimento de aplicações de sistemas de experimentação remota, mas que possui várias limitações, nomeadamente a necessidade de instalação do lado do cliente de um plug-in, cuja disponibilidade se encontra limitada a determinadas versões de sistemas operativos e de Web Browsers. A experiência anterior demonstrou que estas questões limitam o número de clientes com possibilidade de acesso ao laboratório remoto, para além de, em alguns casos, se ter verificado não ser transparente a sua instalação e utilização. Neste contexto, o trabalho de investigação consistiu no desenvolvimento de uma solução que permite a geração de interfaces que possibilitam o controlo remoto do sistema implementado, e que, ao mesmo tempo, são independentes da plataforma usada pelo cliente.
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.
Resumo:
Para obtenção do grau de Doutor pela Universidade de Vigo com menção internacional Departamento de Informática
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.