912 resultados para Lasers - Diagnostic use


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, we use a reconfigurable hologram to dynamically control the position of incidence of the pump beam onto a liquid-crystal dye-based laser. The results show that there is an increase in the stability of the laser output with time and the average power when compared with the output of the same laser when it is optically excited using a static pump beam. This technique also provides additional functionality, such as wavelength tuning and spatial shaping of the pump beam, both of which are demonstrated here. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrodinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate 1.25-1.29 mu m metamorphic laser diodes grown on GaAs by molecular beam epitaxy (MBE) using an alloy-graded buffer layer (GBL). Use of Be in the GBL is effective to reduce surface/interface roughness and improves optical quality. The RMS surface roughness of the optimized metamorphic laser is only two atomic monolayers for 1 x 1 mu m(2). Cross-sectional transmission electron microscopy (TEM) images confirm that most dislocations are blocked in the GBL. Ridge waveguide lasers with 4 mu m wide ridge were fabricated and characterized. The average threshold current under the pulsed excitation is in 170-200 mA for a cavity length of 0.9-1.5 mm. This value can be further reduced to about 100 mA by high-reflectivity coating. Lasers can work in an ambient temperature up to at least 50 degrees C. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental demonstrations of the use of a self-imaging resonator in the phase locking of two fibre lasers are presented. The output power of the phase-locked fibre laser array exceeded 2 W Successful attempts of phase locking show that the fibre laser array is not only capable of producing high Output Power but also large on-axis intensity by this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive formulas for the optical confinement factor Gamma from Maxwell's equations for TE and TM modes in the slab waveguide. The numerical results show that the formulas yield correct mode gain for the modes propagating in the waveguide. We also compare the formulas with the standard definition of Gamma as the ratio of power flow in the active region to the total power flow. The results show that the standard definition will underestimate the difference of optical confinement factors between TE and TM modes, and will underestimate the difference of material gains necessary for polarization insensitive semiconductor laser amplifiers. It is important to use correct optical confinement factors for designing polarization insensitive semiconductor laser amplifiers. For vertical cavity surface-emitting lasers, the numerical results show that Gamma can be defined as the proportion of the product of the refractive index and the squared electric field in the active region. (C) 1996 American Institute of physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skin flap procedures are commonly used in plastic surgery. Failures can follow, leading to the necrosis of the flap. Therefore, many studies use LLLT to improve flap viability. Currently, the LED has been introduced as an alternative to LLLT. the objective of this study was to evaluate the effect of LLLT and LED on the viability of random skin flaps in rats. Forty-eight rats were divided into four groups, and a random skin flap (10 x 4 cm) was performed in all animals. Group 1 was the sham group; group 2 was submitted to LLLT 660 nm, 0.14 J; group 3 with LED 630 nm, 2.49 J, and group 4 with LLLT 660 nm, with 2.49 J. Irradiation was applied after surgery and repeated on the four subsequent days. On the 7th postoperative day, the percentage of flap necrosis was calculated and skin samples were collected from the viable area and from the transition line of the flap to evaluate blood vessels and mast cells. the percentage of necrosis was significantly lower in groups 3 and 4 compared to groups 1 and 2. Concerning blood vessels and mast cell numbers, only the animals in group 3 showed significant increase compared to group 1 in the skin sample of the transition line. LED and LLLT with the same total energies were effective in increasing viability of random skin flaps. LED was more effective in increasing the number of mast cells and blood vessels in the transition line of random skin flaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient early identification of primary immunodeficiency disease (PID) is important for prognosis, but is not an easy task for non-immunologists. The Clinical Working Party of the European Society for Immunodeficiencies (ESID) has composed a multi-stage diagnostic protocol that is based on expert opinion, in order to increase the awareness of PID among doctors working in different fields. The protocol starts from the clinical presentation of the patient; immunological skills are not needed for its use. The multi-stage design allows cost-effective screening for PID within the large pool of potential cases in all hospitals in the early phases, while more expensive tests are reserved for definitive classification in collaboration with an immunologist at a later stage. Although many PIDs present in childhood, others may present at any age. The protocols presented here are therefore aimed at both adult physicians and paediatricians. While designed for use throughout Europe, there will be national differences which may make modification of this generic algorithm necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to the association between cigarette smoking and psychiatric disorders, relatively little is known about the relationship between smokeless tobacco use and psychiatric disorders. To identify the psychiatric correlates of smokeless tobacco use, the analysis used a national representative sample from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) wave 1. Smokeless tobacco use was classified as exclusive snuff use, exclusive chewing tobacco, and dual use of both snuff and chewing tobacco at some time in the smokeless tobacco user's life. Lifetime psychiatric disorders were obtained via structured diagnostic interviews. The results show that the prevalence of lifetime exclusive snuff use, exclusive chewing tobacco, and dual use of both snuff and chewing tobacco was 2.16%, 2.52%, and 2.79%, respectively. After controlling for sociodemographic variables and cigarette smoking, the odds of exclusive chewing tobacco in persons with panic disorder and specific phobia were 1.53 and 1.41 times the odds in persons without those disorders, respectively. The odds of exclusive snuff use, exclusive chewing tobacco, and dual use of both products for individuals with alcohol use disorder were 1.97, 2.01, and 2.99 times the odds for those without alcohol use disorder, respectively. Respondents with cannabis use disorder were 1.44 times more likely to use snuff exclusively than those without cannabis use disorder. Respondents with inhalant/solvent use disorder were associated with 3.33 times the odds of exclusive chewing tobacco. In conclusion, this study highlights the specific links of anxiety disorder, alcohol, cannabis, and inhalant/solvent use disorders with different types of smokeless tobacco use.