963 resultados para LAN houses
Resumo:
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
Resumo:
In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.
Resumo:
Vägar till en halverad energianvändning i Dalarnas byggnadsbestånd
Resumo:
Viewed from a historical perspective, a shift has occurred within the forestry and wood sector towards indoor work. In Sweden, the production of handcrafted log houses has now also begun to move indoors. With a point of departure in development processes within the log house sector involving working indoors, education, work attractiveness, between 2001-2005, the aim of this study was to compare indoor work with outdoor work, based on log house builders' experience of working on handcrafted log houses. Methods used in the interactive development project involving apprentices, experienced log house builders and researchers, were participation with continuous documentation of experiences and opinions; questions; interviews; and measurement of the work environment. The Attractive Work Model has been used in order to analyse perceptions and values. The changes, 15 out of 22 areas, were perceived both negatively and positively. Therefore, it can not be said that working on traditional, handcrafted log houses becomes more attractive if it is moved indoors. The majority wanted to work both outdoors and indoors, while most of the others only wanted to work outdoors. The results indicate that there is scope for developing more attractive work indoors by utilising experiences from log house builders and closely related activities such as the forestry and wood sector. Changes made within one area of work attractiveness affect other areas. Further research is needed both with regard to comparisons between indoor and outdoor work and regarding the interaction between the areas that are identified in the Attractive Work Model.
Resumo:
Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family house, while the unit under test has to act autonomously to cover the heat demand during a representative test cycle. Within the work package 2 of the MacSheep project these similar – but different – test methods were harmonized and improved. The work undertaken includes: • Harmonization of the physical boundaries of the unit under test. • Harmonization of the boundary conditions of climate and load. • Definition of an approach to reach identical space heat load in combination with an autonomous control of the space heat distribution by the unit under test. • Derivation and validation of new six day and a twelve day test profiles for direct extrapolation of test results. The new harmonized test method combines the advantages of the different methods that existed before the MacSheep project. The new method is a benchmark test, which means that the load for space heating and domestic hot water preparation will be identical for all tested systems, and that the result is representative for the performance of the system over a whole year. Thus, no modelling and simulation of the tested system is needed in order to obtain the benchmark results for a yearly cycle. The method is thus also applicable to products for which simulation models are not available yet. Some of the advantages of the new whole system test method and performance rating compared to the testing and energy rating of single components are: • Interaction between the different components of a heating system, e.g. storage, solar collector circuit, heat pump, control, etc. are included and evaluated in this test. • Dynamic effects are included and influence the result just as they influence the annual performance in the field. • Heat losses are influencing the results in a more realistic way, since they are evaluated under "real installed" and representative part-load conditions rather than under single component steady state conditions. The described method is also suited for the development process of new systems, where it replaces time-consuming and costly field testing with the advantage of a higher accuracy of the measured data (compared to the typically used measurement equipment in field tests) and identical, thus comparable boundary conditions. Thus, the method can be used for system optimization in the test bench under realistic operative conditions, i.e. under relevant operating environment in the lab. This report describes the physical boundaries of the tested systems, as well as the test procedures and the requirements for both the unit under test and the test facility. The new six day and twelve day test profiles are also described as are the validation results.
Resumo:
Este trabalho apresenta, inicialmente, uma análise comparativa detalhada dos dois padrões, IEEE 802.11a e IEEE802.11b, que foram apresentados recentemente pelo IEEE na área de redes sem fio (wireless). São apresentadas as principais diferenças tecnológicas dos dois padrões, no que se refere, principalmente, à arquitetura, funções de controle, segurança, desempenho e custo de implementação destas duas tecnologias de redes wireless. São avaliados também os aspectos de interoperabilidade, quando estas redes são integradas em redes corporativas fixas, que são baseadas, principalmente, em redes Ethernet, tradicionalmente usadas em redes corporativas. São considerados também, aspectos de custo e flexibilidade de aplicação das duas tecnologias e mostram-se como estas diferenças devem ser levadas em conta em aplicações típicas de um ambiente corporativo. Finalmente, apresenta-se também, como estudo de caso, uma análise focalizada principalmente na integração da tecnologia wireless em aplicações típicas de uma grande empresa local. Consideram-se as vantagens e desvantagens de ambas as tecnologias, como solução para algumas aplicações típicas encontradas nesta empresa, e justifica-se a escolha da solução que foi adotada. Conclui-se com algumas projeções quanto ao futuro da tecnologia wireless no ambiente público e corporativo.
Resumo:
Este tese analise as implicações dos investimentos em tecnologia de informação e comunicação (ICT) em países ainda em desenvolvimento, especialmente em termos de educação, para estimular a implementação de uma infra-estrutura mais moderna em vez da continuação do uso de métodos tradicionais. Hoje, como o interesse e os investimentos em ICT estão crescendo rapidamente, os módulos e as idéias que existem para medir o estado de ICT são velhos e inexatos, e não podem ser aplicados às culturas de países em desenvolvimento. Políticos e investidores têm que considerar estes problemas quando estão pensando em investimentos ou socorros para programas em ICT no futuro, e investigadores e professores precisam entender os fatores importantes no desenvolvimento para os ICTs e a educação antes de começar estudos nestes países. Este tese conclue que investimentos em tecnologias móbeis e sem fios ajudarem organizações e governos ultrapassar a infra-estrutura tradicional, estreitando a divisão digital e dando o resulto de educação melhor, alfabetização maior, e soluções sustentáveis pelo desenvolvimento nas comunidades pobres no mundo de países em desenvolvimento.
Resumo:
Esta pesquisa foi conduzida com o objetivo de avaliar diferentes tipos de coberturas em instalações para aves, por meio do Índice de Temperatura de Globo Negro e Umidade (ITGU), Carga Térmica de Radiação (CTR) e Entalpia (H). O experimento foi conduzido na Universidade Estadual de Goiás, entre os meses de abril e maio de 2011, sendo composto por cinco tratamentos (coberturas): CA -Telha de cimento-amianto; BA -Telha de bambu; BAP -Telha de bambu pintada de branco; FB -Telha de fibra vegetal e betume; FBP -Telha de fibra vegetal e betume pintada de branco, com 15 repetições, sendo as repetições os dias de medição. Dentre os horários estudados, o considerado menos confortável foi às 14h, sendo que a cobertura de fibra vegetal e betume foi a que apresentou maior valor de ITGU (84,1) quando comparada às demais coberturas, caracterizando uma situação de menor conforto térmico, não sendo observada diferença para CTR e H entre os tratamentos na região estudada.
Resumo:
Because of recent interest in bacteriophage therapy in poultry, information regarding the interaction of bacteriophages and potential host bacteria in the environment should be collected. The present studies were initiated with a rather typical commercial broiler integrator within the south-central United States to examine environmental Salmonella levels in two broiler complexes, attempt to isolate Salmonella-lytic bacteriophages, and elucidate a possible reason for differing apparent Salmonella prevalence. Significantly ( P<0.05) less Salmonella was isolated from houses in complex 1 ( 15/44 [ 34%] Salmonella-positive drag swabs) as compared to houses in complex 2 ( 22/24 [ 92%]). A total of seven Salmonella-lytic bacteriophages were isolated from Salmonella-positive environments, and two bacteriophages were isolated from a single Salmonella-negative house. During the initial bacteriophage isolation, individual bacteriophages did not replicate in the Salmonella host isolated from the same environment, and lysis of additional Salmonella hosts relied on high numbers of bacteriophage to be present. This suggests that the presence of these bacteriophages in the environment of a commercial broiler house had little to no effect on the presence of Salmonella. This study highlights the need to find additional bacteriophage sources, more effective isolation methods, and more innovative approaches to using bacteriophages to treat enteric disease.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Optical networks based on passive-star couplers and employing WDM have been proposed for deployment in local and metropolitan areas. These networks suffer from splitting, coupling, and attenuation losses. Since there is an upper bound on transmitter power and a lower bound on receiver sensitivity, optical amplifiers are usually required to compensate for the power losses mentioned above. Due to the high cost of amplifiers, it is desirable to minimize their total number in the network. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus, optical amplifier placement becomes a challenging problem. In fact, the general problem of minimizing the total amplifier count is a mixed-integer nonlinear problem. Previous studies have attacked the amplifier-placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. This constraint simplifies the problem into a solvable mixed integer linear program. Unfortunately, this artificial constraint can miss feasible solutions that have a lower amplifier count but do not have the equally powered wavelengths constraint. In this paper, we present a method to solve the minimum amplifier- placement problem, while avoiding the equally powered wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required.
Resumo:
Optical networks based on passive star couplers and employing wavelength-division multiplexing (WDhf) have been proposed for deployment in local and metropolitan areas. Amplifiers are required in such networks to compensate for the power losses due to splitting and attenuation. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus optical amplifier placement becomes a challenging problem. The general problem of minimizing the total amplifier count, subject to the device constraints, is a mixed-integer non-linear problem. Previous studies have attacked the amplifier placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. In this paper, we present a method to solve the minimum amplifier- placement problem while avoiding the equally powered- wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required in several small to medium-sized networks.
Resumo:
O artigo analisa o processo de produção de moradia do imigrante japonês no Vale do Ribeira, na região sul do estado de São Paulo, ocorrido no início do século XX. Partindo do contexto histórico do início da colonização da região e as condicionantes que possibilitaram a criação da colônia, o trabalho busca verificar como foram construídas as casas que, baseados na autoconstrução e tendo a terra e madeira formaram o repertório de quase 500 casas. Põe foco em dois exemplares onde são analisadas a técnica do tsuchikabe e as sambladuras; verificando que mesmo diante das adversidades encontradas na natureza distinta de sua origem construíram casas de elevada qualidade. Os saberes trazidos do extremo oriente foram aplicados e se mesclaram às influências, cabocla, quilombola e europeia que hoje, após um século, representam uma categoria expressiva e variada sob os aspectos construtivo, tipológico e programático.