923 resultados para KOH electrolyte


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel proton-conducting gelatinous electrolytes templated by room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF(4)) have been prepared in methylsisesquioxane backbone containing H3PO4, and the influences of the RTIL on the structure, morphology, thermal stability, and electrochemical properties of the gelatinous electrolytes have been examined. X-ray diffraction and scanning electron microscopy proved that BMImBF(4) acted as structure-directing template during the sol-gel process of methyl-trimethoxysilane. X-ray photoelectron spectra and infrared spectroscopy demonstrated that the hydrogen-bonding was formed between BMImBF(4) and H3PO4. The electrolytes had good thermal stability up to 300 degreesC and showed superior mechanical and electrochemical properties. A room-temperature conductivity of 1.2 x 10(-3) S cm(-1) was obtained for the electrolyte at the molar ratio of RTIL/Si/H3PO4 0.3/1/1, and its electrochemical window was up to 1.5 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new flow field was designed to search flow fields fitting polymer electrolyte membrane fuel cells (PEMFCs) better due its extensible. There are many independent inlets and outlets in the new flow field. The new flow field we named NINO can extend to be more general when pressures at the inlet and outlet vary and some usual flow fields will be obtained. A new mathematical model whose view angle is obverse is used to describe the flow field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical properties Of PW12O403- (abbreviated as PW12) anion in poly(ethylene glycol) (PEG) have been studied by cyclic voltammetry, complex impedance and FT-IR spectroscopy. The PW12 anion in PEG-LiClO4 electrolyte shows reasonable facile electrochemistry, and the diffusion coefficients Of PW12 were measured with microelectrode. It is shown that ionic conductivity of polymer electrolytes based on low molecular weight PEG can be improved by the addition of PW12. The increase of conductivity is coupled with decrease of transient cross-links density of polymer chains which is evidenced by the downshift of C-O-C stretching mode. The phenomena are explained in view of ion-ion and ion-polymer interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of oxides, Ce6-xErxMoO15-delta (0.0 less than or equal to x less than or equal to 1.5), was synthesized using wet-chemistry techniques. The precursors and resultant oxide powders were characterized by differential thermal analysis/thermogravimetry, x-ray diffraction, and IR, Raman and x-ray photoelectron spectroscopy. The formation temperature of the powders was found to be as low as 350degreesC. Ce6-xErxMoO15-delta crystallized to a fluorite-related cubic structure. The electrical conductivity of the samples was investigated by using ac impedance spectroscopy. This showed that the presence of Er was related to the oxygen-ion conductivity, and that the highest oxygen-ion conductivity was found in Ce6-xErxMoO15-delta (x = 0.4), ranging from 5.9 x 10(-5) S cm(-1) at 300degreesC to 1.26 x 10(-2) S cm(-1) at 700degreesC, respectively. This kind of material shows a potential application in intermediate-temperature solid oxide fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of plasticizer ethylene carbonate (EC) on the AC impedance spectra and the ionic conductivity are reported. With increasing of EC concentration the semicircle in high frequency disappears, and the slope of the straight line in low frequency decreases. The data obtained from impedance experiments can be explained using an equivalent circuit proposed. On the other hand, the room temperature conductivity increases with EC concentration because of the increase of the segmental flexibility of PEO. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range follows Arrhenius type, but when EC concentration is larger than 20%, the temperature dependence of conductivity obeys the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.