928 resultados para K-Means Cluster
Resumo:
Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems
Resumo:
Biclustering is simultaneous clustering of both rows and columns of a data matrix. A measure called Mean Squared Residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within a submatrix. In this paper a novel algorithm is developed for biclustering gene expression data using the newly introduced concept of MSR difference threshold. In the first step high quality bicluster seeds are generated using K-Means clustering algorithm. Then more genes and conditions (node) are added to the bicluster. Before adding a node the MSR X of the bicluster is calculated. After adding the node again the MSR Y is calculated. The added node is deleted if Y minus X is greater than MSR difference threshold or if Y is greater than MSR threshold which depends on the dataset. The MSR difference threshold is different for gene list and condition list and it depends on the dataset also. Proper values should be identified through experimentation in order to obtain biclusters of high quality. The results obtained on bench mark dataset clearly indicate that this algorithm is better than many of the existing biclustering algorithms
Resumo:
The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
In recent years there is an apparent shift in research from content based image retrieval (CBIR) to automatic image annotation in order to bridge the gap between low level features and high level semantics of images. Automatic Image Annotation (AIA) techniques facilitate extraction of high level semantic concepts from images by machine learning techniques. Many AIA techniques use feature analysis as the first step to identify the objects in the image. However, the high dimensional image features make the performance of the system worse. This paper describes and evaluates an automatic image annotation framework which uses SURF descriptors to select right number of features and right features for annotation. The proposed framework uses a hybrid approach in which k-means clustering is used in the training phase and fuzzy K-NN classification in the annotation phase. The performance of the system is evaluated using standard metrics.
Resumo:
In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest
Resumo:
In a leading service economy like India, services lie at the very center of economic activity. Competitive organizations now look not only at the skills and knowledge, but also at the behavior required by an employee to be successful on the job. Emotionally competent employees can effectively deal with occupational stress and maintain psychological well-being. This study explores the scope of the first two formants and jitter to assess seven common emotional states present in the natural speech in English. The k-means method was used to classify emotional speech as neutral, happy, surprised, angry, disgusted and sad. The accuracy of classification obtained using raw jitter was more than 65 percent for happy and sad but less accurate for the others. The overall classification accuracy was 72% in the case of preprocessed jitter. The experimental study was done on 1664 English utterances of 6 females. This is a simple, interesting and more proactive method for employees from varied backgrounds to become aware of their own communication styles as well as that of their colleagues' and customers and is therefore socially beneficial. It is a cheap method also as it requires only a computer. Since knowledge of sophisticated software or signal processing is not necessary, it is easy to analyze
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
Analisa-se se os funcionamentos inferenciais têm uma estrutura própria dos sistemas dinâmicos não lineais, estudados a partir de quatro gráficas humorísticas. Os primeiros resultados com o tratamento estadístico lineal de K-medias projetam a presencia de perfis de diferentes funcionamentos inferenciais em função das diferentes piadas. Os resultados com a técnica da wavelet, proveniente dos sistemas dinâmicos não lineais, mostram patrões dos funcionamentos inferenciais que dão conta de sua natureza multifractal, sem uma sequencialidade fixa e sem uma organização aparente. Isto implica que é necessário revisar a concepção de estádios sequenciais fixos como os que dominam os estudos de desenvolvimento cognitivo.
Resumo:
Integrar diferentes unidades de análisis para el estudio de la personalidad y considerar estas unidades en su predicción de la satisfacción y el rendimiento en adolescentes. 296 estudiantes de ESO de entre 15 y 18 años. 162 son mujeres y 134 varones. Las aplicaciones de las pruebas se realizan en horario de tutorías dentro del Plan Acción Tutorial (PAT). Se les explica a los alumnos que participan en la investigación sobre 'metas que se proponen realizar en un futuro' y que las pruebas que se administran les pueden ayudar en el futuro para la toma de decisiones. Las aplicaciones de las pruebas se realizan en dos sesiones de evaluación. En la primera, se aplican las pruebas de personalidad y satisfacción. En la segunda se evalúan metas personales. El rendimiento académico se operativiza por la puntuación del adolescente en su curso académico. Todos los alumnos participan voluntariamente en la investigación. Escala de objetivos o metas personales, escala de satisfacción por áreas vitales (ESAV), Inventario de personalidad para adolescentes de Millón (MAPI), estilos básicos de personalidad, escalas de correlatos comportamentales. Para el análisis de los datos, se utilizan programas estadísticos SPSS, SPAD, LISREL VIII y para el cálculo del tamaño del efecto el Statistical Power Computer Analysis. Las técnicas de análisis de datos se centran en Análisis de Correspondencia Múltiple (ACM), análisis de conglomerados K means, Análisis de varianza y diferencias entre coeficientes de correlación. Los resultados indican que los adolescentes que se plantean metas relacionadas con las tareas vitales a desarrollar en un futuro próximo manifiestan mayores niveles de satisfacción. Además, las diferencias en los estilos de personalidad, permiten entender el sistema de metas personales en cuatro grupos de adolescentes. La consideración de los estilos de personalidad y las metas personales permiten entender la adaptación de los adolescentes a su entorno considerando la satisfacción autopercibida y el rendimiento académico.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
A fast backward elimination algorithm is introduced based on a QR decomposition and Givens transformations to prune radial-basis-function networks. Nodes are sequentially removed using an increment of error variance criterion. The procedure is terminated by using a prediction risk criterion so as to obtain a model structure with good generalisation properties. The algorithm can be used to postprocess radial basis centres selected using a k-means routine and, in this mode, it provides a hybrid supervised centre selection approach.
Resumo:
Extratropical transition (ET) has eluded objective identification since the realisation of its existence in the 1970s. Recent advances in numerical, computational models have provided data of higher resolution than previously available. In conjunction with this, an objective characterisation of the structure of a storm has now become widely accepted in the literature. Here we present a method of combining these two advances to provide an objective method for defining ET. The approach involves applying K-means clustering to isolate different life-cycle stages of cyclones and then analysing the progression through these stages. This methodology is then tested by applying it to five recent years from the European Centre of Medium-Range Weather Forecasting operational analyses. It is found that this method is able to determine the general characteristics for ET in the Northern Hemisphere. Between 2008 and 2012, 54% (±7, 32 of 59) of Northern Hemisphere tropical storms are estimated to undergo ET. There is great variability across basins and time of year. To fully capture all the instances of ET is necessary to introduce and characterise multiple pathways through transition. Only one of the three transition types needed has been previously well-studied. A brief description of the alternate types of transitions is given, along with illustrative storms, to assist with further study