974 resultados para Jumonji Domain-Containing Histone Demethylases
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Numerous steatotic livers are discarded for transplantation because of their poor tolerance to ischemia-reperfusion (I/R). We examined whether tauroursodeoxycholic acid (TUDCA), a known inhibitor of endoplasmic reticulum (ER) stress, protects steatotic and nonsteatotic liver grafts preserved during 6 h in University of Wisconsin (UW) solution and transplanted. The protective mechanisms of TUDCA were also examined. Neither unfolded protein response (UPR) induction nor ER stress was evidenced in steatotic and nonsteatotic liver grafts after 6 h in UW preservation solution. TUDCA only protected steatotic livers grafts and did so through a mechanism independent of ER stress. It reduced proliferator-activated receptor-gamma(PPAR gamma) and damage. When PPAR gamma was activated, TUDCA did not reduce damage. TUDCA, which inhibited PPAR gamma, and the PPAR gamma antagonist treatment up-regulated toll-like receptor 4 (TLR4), specifically the TIR domain-containing adaptor inducing IFN beta (TRIF) pathway. TLR4 agonist treatment reduced damage in steatotic liver grafts. When TLR4 action was inhibited, PPAR gamma antagonists did not protect steatotic liver grafts. In conclusion, TUDCA reduced PPAR gamma and this in turn up-regulated the TLR4 pathway, thus protecting steatotic liver grafts. TLR4 activating-based strategies could reduce the inherent risk of steatotic liver failure after transplantation.
Resumo:
The hosts for Antricola delacruzi ticks are insectivorous, cave-dwelling bats on which only larvae are found. The mouthparts of nymphal and adult A. delacruzi are compatible with scavenging feeding because the hypostome is small and toothless. How a single blood meal of a larva provides energy for several molts as well as for oviposition by females is not known. Adults of A. delacruzi possibly feed upon an unknown food source in bat guano, a substrate on which nymphal and adult stages are always found. Guano produced by insectivorous bats contains twice the amount of protein and 60 times the amount of iron as beef. In addition, bacteria and chitin-rich fungi proliferate on guano. Comparative data on the transcriptome of the salivary glands of A. delacruzi is nonexistent and would help to understand the physiological adaptations of salivary glands that accompany different sources of food as well as the steps taken by the Acari toward haematophagy, believed to have evolved from scavenging dead animals. Annotation of the transcriptome of salivary glands from female instars of A. delacruzi collected on guano categorized 5.7% of the clusters of expressed genes as putative secreted proteins. They included abundantly expressed TIL-domain-containing proteins (possible anti-microbials), an abundantly expressed protein similar to a serum amyloid found in the sialotranscriptomes of Ornithodoros spp., a savignygrin, a family of mucin/peritrophin/cuticle-like proteins, anti-microbials and an HIV envelope-like glycoprotein also found in soft ticks. When comparing the transcriptome of A. delacruzi with those of blood-feeding female soft and hard ticks some notable differences were observed; they consisted of the following transcripts over- or under-represented or absent in the sialotranscriptome of A. delacruzi that may reflect its source of food: ferritin, mucins with chitin-binding domains and TIL-domain-containing proteins versus lipocalins, basic tail proteins, metalloproteases, glycine-rich proteins and Kunitz protease inhibitors, respectively. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
DEP domain-containing mTOR-interacting protein (DEPTOR) inhibits the mechanistic target of rapamycin (mTOR), but its in vivo functions are unknown. Previous work indicates that Deptor is part of the Fob3a quantitative trait locus (QTL) linked to obesity/leanness in mice, with Deptor expression being elevated in white adipose tissue (WAT) of obese animals. This relation is unexpected, considering the positive role of mTOR in adipogenesis. Here, we dissected the Fob3a QTL and show that Deptor is the highest-priority candidate promoting WAT expansion in this model. Consistently, transgenic mice overexpressing DEPTOR accumulate more WAT. Furthermore, in humans, DEPTOR expression in WAT correlates with the degree of obesity. We show that DEPTOR is induced by glucocorticoids during adipogenesis and that its overexpression promotes, while its suppression blocks, adipogenesis. DEPTOR activates the proadipogenic Akt/PKB-PPAR-gamma axis by dampening mTORC1-mediated feedback inhibition of insulin signaling. These results establish DEPTOR as a new regulator of adipogenesis.
Resumo:
Although the biology the PLUNC (recently renamed BPI fold, BPIF) family of secreted proteins is poorly understood, multiple array based studies have suggested that some are differentially expressed in lung diseases. We have examined the expression of BPIFB1 (LPLUNC1), the prototypic two-domain containing family member, in lungs from CF patients and in mouse models of CF lung disease. BPIFB1 was localized in CF lung samples along with BPIFA1, MUC5AC, CD68 and NE and directly compared to histologically normal lung tissues and that of bacterial pneumonia. We generated novel antibodies to mouse BPIF proteins to conduct similar studies on ENaC transgenic (ENaC-Tg) mice, a model for CF-like lung disease. Small airways in CF demonstrated marked epithelial staining of BPIFB1 in goblet cells but staining was absent from alveolar regions. BPIFA1 and BPIFB1 were not co-localised in the diseased lungs. In ENaC-Tg mice there was strong staining of both proteins in the airways and luminal contents. This was most marked for BPIFB1 and was noted within 2 weeks of birth. The two proteins were present in distinct cells within epithelium. BPIFB1 was readily detected in BAL from ENaC-Tg mice but was absent from wild-type mice. Alterations in the expression of BPIF proteins is associated with CF lung disease in humans and mice. It is unclear if this elevation of protein production, which results from phenotypic alteration of the cells within the diseased epithelium, plays a role in the pathogenesis of the disease.
Resumo:
NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1β/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1β secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1β production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages
Resumo:
Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.
Resumo:
Tetraspan vesicle membrane proteins (TVPs) sind konservierte, ubiquitär vorkommende Membranproteine synaptischer Vesikel und zytoplasmatischer Transportvesikel. Bei Säugetieren lassen sie sich in die Physine, Gyrine und SCAMPs (secretory carrier-associated membrane proteins) unterteilen, die im Nematoden C. elegans jeweils nur durch ein einzelnes Polypeptid vertreten sind (Synaptophysin-1 [SPH-1], Synaptogyrin-1 [SNG-1] und SCAMP-1 [SCM-1]). Obwohl den TVPs eine Beteiligung bei der Regulation des Vesikelzyklus zugesprochen wurde, sind Synaptophysin-1-Knockout-Mäuse und vollständig TVP-defiziente Würmer gesund und weisen nur geringgradige Veränderungen auf. In dieser Arbeit sollten daher zum einen genomweite komparative Transkriptomanalysen durchgeführt werden, um mögliche Kompensationsmechanismen in der Maus und C. elegans zu finden, zum anderen sollten mit Hilfe pharmakologischer Stressassays und genetischer Verfahren Schwachstellen und Redundanzen identifiziert werden. Erstaunlicherweise konnten durch Affymetrix GeneChip-Analysen der RNA in der Retina von Synaptophysin-1-/--Mäusen keine differenziell exprimierten Gene gefunden werden. Bei der Untersuchung der C. elegans-TVP-Dreifachmutante wurden hingegen 17 Gene mit erhöhter und 3 mit erniedrigter Transkription identifiziert. Die Befunde für 12 hochregulierte Gene wurden durch quantitative Real-Time RT-PCR bestätigt. Das am stärksten hochregulierte Gen arf-1.1 kodiert für eine GTPase, die vermutlich an der Regulation der Vesikelbildung beteiligt ist. Von den ebenso identifizierten Genen cdr-2, cdr-4 und pgp-9 ist bekannt, dass sie in Stresssituationen, z. B. in Gegenwart von Cadmium, verstärkt transkribiert werden. ugt-62 und ugt-19 kodieren für Glucuronosyltransferasen. Für arf-1.1, cdr-2, ugt-62 sowie für das Gen T16G1.6, das für eine coiled-coil-Domäne kodiert, wurden im Folgenden fluoreszierende Promoterkonstrukte hergestellt, um Koexpressionsmuster mit TVPs zu bestimmen. Es stellte sich heraus, dass alle vier Promoterkonstrukte im Darm zusammen mit SPH-1 und SCM-1 im Darm transkribiert werden. Mit fluoreszierenden Translationschimären konnte weiterhin gezeigt werden, dass ARF-1.1 und CDR-2 mit den Darm-spezifischen TVPs im apikalen Bereich der Darmzellen kolokalisieren. Um mehr über die Funktion von TVPs im Vesikelzyklus zu erfahren, wurden pharmakologische und genetische Analysen von Würmern durchgeführt, in denen die Expression des Neuronen-spezifischen SNG-1 verändert ist. Deletion oder Überexpression führte zu einer Resistenz gegenüber dem Acetylcholinesterase-Inhibitor Aldicarb und zu erhöhter Empfindlichkeit gegenüber dem GABA-Rezeptor-Antagonisten Pentylentetrazol. Auf genetischer Ebene zeigte sich, dass sng-1 synthetisch mit den Genen für Synaptotagmin-1, Endophilin A sowie Synaptojanin wirkt. Die beobachteten Effekte weisen auf alternative Funktionen in der synaptischen Übertragung hin und unterstützen zugleich die Hypothese, dass SNG-1 im synaptischen Vesikelzyklus eine wichtige Funktion erfüllt, die möglicherweise einem noch unbekannten redundanten Kompartiment-spezifischen Signalweg der synaptischen Transmission zuzuordnen ist.
Resumo:
Survivin, a unique member of the family of inhibitors of apoptosis (IAP) proteins, orchestrates intracellular pathways during cell division and apoptosis. Its central regulatory function in vertebrate molecular pathways as mitotic regulator and inhibitor of apoptotic cell death has major implications for tumor cell proliferation and viability, and has inspired several approaches that target survivin for cancer therapy. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution the second, complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulatory molecule, a survivin homologue of the phylogenetically oldest extant metazoan taxon (phylum Porifera) was identified and functionally characterized. SURVL of the demosponge Suberites domuncula shares significant similarities with its metazoan homologues, ranging from conserved exon/intron structures to the presence of localization signal and protein-interaction domains, characteristic of IAP proteins. Whereas sponge tissue displayed a very low steady-state level, SURVL expression was significantly up-regulated in rapidly proliferating primmorph cells. In addition, challenge of sponge tissue and primmorphs with cadmium and the lipopeptide Pam3Cys-Ser-(Lys)4 stimulated SURVL expression, concurrent with the expression of newly discovered poriferan caspases (CASL and CASL2). Complementary functional analyses in transfected HEK-293 revealed that heterologous expression of poriferan survivin in human cells not only promotes cell proliferation but also augments resistance to cadmium-induced cell death. Taken together, these results demonstrate both a deep evolutionary conserved and fundamental dual role of survivin, and an equally conserved central position of this key regulatory molecule in interconnected pathways of cell cycle and apoptosis. Additionally, SDCASL, SDCASL2, and SDTILRc (TIR-LRR containing protein) may represent new components of the innate defense sentinel in sponges. SDCASL and SDCASL2 are two new caspase-homolog proteins with a singular structure. In addition to their CASc domains, SDCASL and SDCASL2 feature a small prodomain NH2-terminal (effector caspases) and a remarkably long COOH-terminal domain containing one or several functional double stranded RNA binding domains (dsrm). This new caspase prototype can characterize a caspase specialization coupling pathogen sensing and apoptosis, and could represent a very efficient defense mechanism. SDTILRc encompasses also a unique combination of domains: several leucine rich repeats (LRR) and a Toll/IL-1 receptor (TIR) domain. This unusual domain association may correspond to a new family of intracellular sensing protein, forming a subclass of pattern recognition receptors (PRR).
Resumo:
Staphylococcus carnosus ist ein fakultativ anaerobes Bakterium, das aerobe Atmung, anaerobe Nitratatmung und Gärungsstoffwechsel betreiben kann. Die Expression des Nitratstoffwechsels wird durch das Dreikomponentensystem NreABC reguliert.rnUnter anaeroben Bedingungen besitzt die Sensorhistidinkinase NreB in ihrer PAS-Domäne ein [Fe4S4]2+-Cluster. Das aktive (anaerobe) [Fe4S4]2+-NreB überträgt nach Autophosphorylierung die Phosphorylgruppe auf den Antwortregulator NreC, welcher dann die Expression der Gene der Nitratatmung aktiviert. Nitrat wirkt mit Hilfe des NreA-Proteins auf diese Gene induzierend. Im Rahmen der vorliegenden Arbeit wurde gezeigt, dass NreA ein GAF-Domänen-Protein und ein neuartiger Nitratrezeptor ist.rnDie Natur von NreA als GAF-Domänen-Protein bestätigte sich beim Vergleich der Kristallstruktur mit denen anderer GAF-Domänen. GAF-Domänen sind weit verbreitet und binden typischer Weise kleine Moleküle. Als physiologischer Ligand von NreA zeigte sich Nitrat, das innerhalb einer definierten Bindetasche gebunden wird. NreA bindet vermutlich in dimerer Form an dimeres NreB und inhibiert dadurch die Phosphorylierung der Sensorhistidinkinase NreB. Die Interaktion von NreA mit NreB wurde in vivo durch BACTH-Messungen und sowohl in vivo als auch in vitro durch Cross-Linking Experimente gezeigt. Nitrat reduziert den Ergebnissen nach die Interaktion von NreA mit NreB.rnDurch Sequenzvergleiche von NreA mit Homologen wurden konservierte Aminosäuren identifiziert. Über gerichtete Mutagenese wurden 25 NreA-Varianten hergestellt und bezüglich ihres Verhaltens in Abhängigkeit von Nitrat in narG-lip-Reportergenstudien getestet. Anhand ihres Phänotyps wurden sie als Wildtyp, NreA- und NreABC-Mutanten klassifiziert. Die Nitratbindetasche war in sechs Fällen betroffen. Die Phänotypen der Mutationen in der Peripherie lassen sich mit Auswirkungen auf die vermutete Konformationsänderung oder auf die Interaktion mit NreB erklären. Mutationen von konservierten, oberflächenexponierten Resten führten vermehrt zu NreA/ON-Varianten. Es ließen sich Bereiche auf der Proteinoberfläche identifizieren, die für NreA/NreA- oder NreA/NreB-Interaktionen wichtig sein könnten.rnDie Untersuchungen zeigten, dass NreA mit NreB interagiert und dass dadurch ein NreA/NreB-Sensorkomplex für die gemeinsame Erkennung von Nitrat und Sauerstoff gebildet wird.
Resumo:
Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.
Resumo:
Ephrins are cell surface-associated ligands for Eph receptors and are important regulators of morphogenic processes such as axon guidance and angiogenesis. Transmembrane ephrinB ligands act as "receptor-like" signaling molecules, in part mediated by tyrosine phosphorylation and by engagement with PDZ domain proteins. However, the underlying cell biology and signaling mechanisms are poorly understood. Here we show that Src family kinases (SFKs) are positive regulators of ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling. EphB receptor engagement of ephrinB causes rapid recruitment of SFKs to ephrinB expression domains and transient SFK activation. With delayed kinetics, ephrinB ligands recruit the cytoplasmic PDZ domain containing protein tyrosine phosphatase PTP-BL and are dephosphorylated. Our data suggest the presence of a switch mechanism that allows a shift from phosphotyrosine/SFK-dependent signaling to PDZ-dependent signaling.
Resumo:
PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.
Resumo:
To investigate mechanisms by which angiotensin converting enzyme (ACE)-inhibition increases insulin sensitivity, spontaneously hypertensive (SH) rats were treated with or without ramipril (1 mg/kg per day) for 12 weeks. Insulin binding and protein levels of insulin receptor substrate-1 (IRS-1), p85-subunit of phosphatidylinositol 3'-kinase (p85) and Src homology 2 domain-containing phosphatase-2 (SHP2) were then determined in hindlimb muscle and liver. Additionally, protein tyrosine phosphatase (PTPase) activities towards immobilized phosphorylated insulin receptor or phosphorylated IRS-1 of membrane (MF) and cytosolic fractions (CF) of these tissues were measured. Ramipril treatment increased IRS-1-protein content in muscle by 31+/-9% (P<0.05). No effects were observed on IRS-1 content in liver or on insulin binding or protein expression of p85 or SHP2 in both tissues. Ramipril treatment also increased dephosphorylation of insulin receptor by muscle CF (22.0+/-1.0%/60 min compared to 16.8+/-1.5%/60 min; P<0.05), and of IRS-1 by liver MF (37.2+/-1.7%/7.5 min compared to 33.8+/-1.7%/7.5 min; P<0.05) and CF (36.8+/-1.0%/7.5 min compared to 33.2+/-1.0%/7.5 min; P<0.05). We conclude that the observed effects of ACE-inhibition by ramipril on the protein expression of IRS-1 and on PTPase activity might contribute to its effect on insulin sensitivity.