999 resultados para Interorganisational networks
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
We consider the problem of object tracking in a wireless multimedia sensor network (we mainly focus on the camera component in this work). The vast majority of current object tracking techniques, either centralised or distributed, assume unlimited energy, meaning these techniques don't translate well when applied within the constraints of low-power distributed systems. In this paper we develop and analyse a highly-scalable, distributed strategy to object tracking in wireless camera networks with limited resources. In the proposed system, cameras transmit descriptions of objects to a subset of neighbours, determined using a predictive forwarding strategy. The received descriptions are then matched at the next camera on the objects path using a probability maximisation process with locally generated descriptions. We show, via simulation, that our predictive forwarding and probabilistic matching strategy can significantly reduce the number of object-misses, ID-switches and ID-losses; it can also reduce the number of required transmissions over a simple broadcast scenario by up to 67%. We show that our system performs well under realistic assumptions about matching objects appearance using colour.
Resumo:
Internationally the railway industry is facing a severe shortage of engineers with high level, relevant, profession and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level program has been created to meet that global need via a fully online, distance education format. The development and operation of this Master of Engineering degree is proposed as a model of the process needed for the industry-relevance, flexible delivery, international networking, and professional development required for a successful graduate engineering program in the 21st century. In particular, the paper demonstrates how a mix of new and more familiar technologies are utilised through a variety of tasks to overcome the huge distances and multiple time zones that separate the participants across a growing number of countries, successfully achieving close and sustained interaction amongst the participants and railway experts.
Resumo:
As the world’s rural populations continue to migrate from farmland to sprawling cities, transport networks form an impenetrable maze within which monocultures of urban form erupt from the spaces in‐between. These urban monocultures are as problematic to human activity in cities as cropping monocultures are to ecosystems in regional landscapes. In China, the speed of urbanisation is exacerbating the production of mono‐functional private and public spaces. Edges are tightly controlled. Barriers and management practices at these boundaries are discouraging the formation of new synergistic relationships, critical in the long‐term stability of ecosystems that host urban habitats. Some urban planners, engineers, urban designers, architects and landscape architects have recognised these shortcomings in contemporary Chinese cities. The ideology of sustainability, while critically debated, is bringing together thinking people in these and other professions under the umbrella of an ecological ethic. This essay aims to apply landscape ecology theory, a conceptual framework used by many professionals involved in land development processes, to a concept being developed by BAU International called Networks Cities: a city with its various land uses arranged in nets of continuity, adjacency, and superposition. It will consider six lesser‐known concepts in relation to creating enhanced human activity along (un)structured edges between proposed nets and suggest new frontiers that might be challenged in an eco‐city. Ecological theory suggests that sustaining biodiversity in regions and landscapes depends on habitat distribution patterns. Flora and fauna biologists have long studied edge habitats and have been confounded by the paradox that maximising the breadth of edges is detrimental to specialist species but favourable to generalist species. Generalist species of plants and animals tolerate frequent change in the landscape, frequenting two or more habitats for their survival. Specialist species are less tolerant of change, having specific habitat requirements during their life cycle. Protecting species richness then may be at odds with increasing mixed habitats or mixed‐use zones that are dynamic places where diverse activities occur. Forman (1995) in his book Land Mosaics however argues that these two objectives of land use management are entirely compatible. He postulates that an edge may be comprised of many small patches, corridors or convoluting boundaries of large patches. Many ecocentrists now consider humans to be just another species inhabiting the ecological environments of our cities. Hence habitat distribution theory may be useful in planning and designing better human habitats in a rapidly urbanising context like China. In less‐constructed environments, boundaries and edges provide important opportunities for the movement of multi‐habitat species into, along and from adjacent land use areas. For instance, invasive plants may escape into a national park from domestic gardens while wildlife may forage on garden plants in adjoining residential areas. It is at these interfaces that human interactions too flow backward and forward between land types. Spray applications of substances by farmers on cropland may disturb neighbouring homeowners while suburban residents may help themselves to farm produce on neighbouring orchards. Edge environments are some of the most dynamic and contested spaces in the landscape. Since most of us require access to at least two or three habitats diurnally, weekly, monthly or seasonally, their proximity to each other becomes critical in our attempts to improve the sustainability of our cities.
Resumo:
The question posed in this chapter is: To what extent does current education theory and practice prepare graduates for the creative economy? We first define what we mean by the term creative economy, explain why we think it is a significant point of focus, derive its key features, describe the human capital requirements of these features, and then discuss whether current education theory and practice are producing these human capital requirements. The term creative economy can be critiqued as a shibboleth, but as a high level metaphor, it nevertheless has value in directing us away from certain sorts of economic activity and toward other kinds. Much economic activity is in no way creative. If I have a monopoly on some valued resource, I do not need to be creative. Other forms of economic activity are intensely creative. If I have no valued resources, I must create something that is valued. At its simplest and yet most profound, the idea of a creative economy suggests a capacity to compete based on engaging in a gainful activity that is different from everyone else’s, rather than pursuing the same endeavor more competitively than everyone else. The ability to differentiate on novelty is key to the concept of creative economy and key to our analysis of education for this economy. Therefore, we follow Potts and Cunningham (2008, p. 18) and Potts, Cunningham, Hartley, and Ormerod (2008) in their discussion of the economic significance of the creative industries and see the creative economy not as a sector but as a set of economic processes that act on the economy as a whole to invigorate innovation based growth. We see the creative economy as suffused with all industry rather than as a sector in its own right. These economic processes are essentially concerned with the production of new ideas that ultimately become new products, service, industry sectors, or, in some cases, process or product innovations in older sectors. Therefore, our starting point is that modern economies depend on innovation, and we see the core of innovation as new knowledge of some kind. We commence with some observations about innovation.
Resumo:
The explosion in use of online social networks is an important phenomenon that provides a new set of entrepreneurial opportunities. Emerging musicians have been among the first to exploit this new market opportunity – and indeed, many have used it successfully. A recent study Carter (2009) reveals that artists who earned the most returns had an online presence on multiple social online sites and services such as MySpace and Facebook. These web pages are leveraged to build fan bases and develop different types of revenue streams. Yet, little is currently known about discovery or exploitation of such opportunities.
Resumo:
Record 8 of 29
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
Optimal scheduling of voltage regulators (VRs), fixed and switched capacitors and voltage on customer side of transformer (VCT) along with the optimal allocaton of VRs and capacitors are performed using a hybrid optimisation method based on discrete particle swarm optimisation and genetic algorithm. Direct optimisation of the tap position is not appropriate since in general the high voltage (HV) side voltage is not known. Therefore, the tap setting can be determined give the optimal VCT once the HV side voltage is known. The objective function is composed of the distribution line loss cost, the peak power loss cost and capacitors' and VRs' capital, operation and maintenance costs. The constraints are limits on bus voltage and feeder current along with VR taps. The bus voltage should be maintained within the standard level and the feeder current should not exceed the feeder-rated current. The taps are to adjust the output voltage of VRs between 90 and 110% of their input voltages. For validation of the proposed method, the 18-bus IEEE system is used. The results are compared with prior publications to illustrate the benefit of the employed technique. The results also show that the lowest cost planning for voltage profile will be achieved if a combination of capacitors, VRs and VCTs is considered.
Resumo:
Traditional approaches to the use of machine learning algorithms do not provide a method to learn multiple tasks in one-shot on an embodied robot. It is proposed that grounding actions within the sensory space leads to the development of action-state relationships which can be re-used despite a change in task. A novel approach called an Experience Network is developed and assessed on a real-world robot required to perform three separate tasks. After grounded representations were developed in the initial task, only minimal further learning was required to perform the second and third task.
Resumo:
We describe a novel two stage approach to object localization and tracking using a network of wireless cameras and a mobile robot. In the first stage, a robot travels through the camera network while updating its position in a global coordinate frame which it broadcasts to the cameras. The cameras use this information, along with image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to track the objects. We present results with a nine node indoor camera network to demonstrate that this approach is feasible and offers acceptable level of accuracy in terms of object locations.
Resumo:
A remarkable growth in quantity and popularity of online social networks has been observed in recent years. There is a good number of online social networks exists which have over 100 million registered users. Many of these popular social networks offer automated recommendations to their users. This automated recommendations are normally generated using collaborative filtering systems based on the past ratings or opinions of the similar users. Alternatively, trust among the users in the network also can be used to find the neighbors while making recommendations. To obtain the optimum result, there must be a positive correlation exists between trust and interest similarity. Though the positive relations between trust and interest similarity are assumed and adopted by many researchers; no survey work on real life people’s opinion to support this hypothesis is found. In this paper, we have reviewed the state-of-the-art research work on trust in online social networks and have presented the result of the survey on the relationship between trust and interest similarity. Our result supports the assumed hypothesis of positive relationship between the trust and interest similarity of the users.
Resumo:
Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.
Resumo:
In recent years, there is a dramatic growth in number and popularity of online social networks. There are many networks available with more than 100 million registered users such as Facebook, MySpace, QZone, Windows Live Spaces etc. People may connect, discover and share by using these online social networks. The exponential growth of online communities in the area of social networks attracts the attention of the researchers about the importance of managing trust in online environment. Users of the online social networks may share their experiences and opinions within the networks about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Recommendations may be received through a chain of friends network, so the problem for the user is to be able to evaluate various types of trust opinions and recommendations. This opinion or recommendation has a great influence to choose to use or enjoy the item by the other user of the community. Collaborative filtering system is the most popular method in recommender system. The task in collaborative filtering is to predict the utility of items to a particular user based on a database of user rates from a sample or population of other users. Because of the different taste of different people, they rate differently according to their subjective taste. If two people rate a set of items similarly, they share similar tastes. In the recommender system, this information is used to recommend items that one participant likes, to other persons in the same cluster. But the collaborative filtering system performs poor when there is insufficient previous common rating available between users; commonly known as cost start problem. To overcome the cold start problem and with the dramatic growth of online social networks, trust based approach to recommendation has emerged. This approach assumes a trust network among users and makes recommendations based on the ratings of the users that are directly or indirectly trusted by the target user.