969 resultados para INTERACTION MECHANISM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isospin degree of freedom is inserted into the momentum dependent interaction in the quantum molecular dynamics model to obtain an isospin dependent momentum interaction given in a form practically usable in isospin dependent quantum molecular dynamics model. We investigate the entrance channel effects for the role of isospin momentum dependent interaction on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the isospin dependent momentum interaction induces a significant reduction of isospin fractionation ratio under all entrance channel conditions. However the strong dependence of isospin fractionation ratio on the symmetry potential is preserved after considering the isospin degree of freedom in the momentum dependent interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pressurized capillary electrochromatography (pCEC) instrument with solvent gradient capability has been used for the separation of a peptide mixture. Retention mechanism and selectivity of the peptides were studied by pCEC using a strong cation exchange (SCX) column. The effects of applied voltage, supplementary pressure, organic modifier concentration, ionic strength,, and pH value on pCEC separation were investigated. It was found that the retention mechanism of the peptides in this system is based on a mixed mode of hydrophilic interaction, strong cation exchange, and electrophoresis. Compared with the separation results obtained by reverse phase pCEC and capillary electrophoresis (CE), this mixed-mode pCEC is more powerful for the separation of hydrophilic peptides with similar charge-to-mass ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction mechanism of Pt(0)-catalyzed diboration reaction of allenes is investigated by the density functional method B3LYP. The overall reaction mechanism is examined. The electronic mechanisms of the allene insertion into the Pt-B bond are discussed in terms of the electron donation, back-donation, and d-pi interaction. During allene insertion into the Pt-B bond, the internal carbon atom of allene is preferred over the terminal one due to the stronger electron back-donation and stronger charge transfer in the former case than that in the latter one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p21 is a protein with important roles in cell proliferation, cell cycle regulation and apoptosis. Several studies have demonstrated that its intracellular localization plays an important role in the functional regulation and binding of calmodulin favors its nuclear translocation. However, the detail mechanism of the interaction with p21 and calmodulin is not well understood. In this report, peptides derived from the C-terminal of p21 that cover the binding domain of calmodulin were used to investigate the association of p21 with calmodulin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study. lectin-conjugated gold nanoparticles (GNPs) were prepared by standard biotin-streptavidin chemistry. The lectin-conjugated GNPs call be used as ail indicator for studying the interaction of lectin with glycosyl complex on living cellular Surfaces due to the high affinity of the lectin with saccharides. The interactions of two well-known lectins (Ricinus communis agglutinin and concanavalin A) and three different cell lines (HeLa, 293, and 293T) were selected here to establish this assay. Highly binding affinity of R. communis agglutinin with cells was demonstrated by conventional microscopic and UV-visible spectroscopic Studies. In addition, the binding process can be inhibited by galactose, giving further proof of the binding mechanism. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the electronic structure of the d-electron heavy-fermion system CaCu3Ru4O12 by use of the full-potential linearized augmented plane wave method. Our results indicate that the compound is a paramagnetic metal, in agreement with the experimental observation. The conductivity of the compound is governed by two main factors. One is the Ru-O dp pi coupling around the Fermi energy level, which makes Ru-O-Ru networks conductive. The other is the hybridization between the itinerant Ru 4d electrons and the localized Cu 3d (dz(2) and part of dx(2)-y(2) and dxy) electrons through O 2p orbitals in the energy region from -2.0 to -1.0 eV. The Ru-O-Cu interaction makes the localized Cu electrons start to be itinerant through the coupling with Ru 4d electrons. This results in Ru-O-Cu networks being conductive. Therefore, in the title compound, both Ru-O-Ru and Ru-O-Cu networks contribute to the conducting behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of antitumor antibiotic, echinomycin (Echi) with guanine (Gua) was thoroughly investigated by adsorptive transfer stripping cyclic voltammetry, ultraviolet and visible adsorption spectra (UV/Vis) and Fourier-transform infrared spectroscopy (FTIR). Electrochemistry provided a simple tool for verifying the occurrence of interaction between Echi and Gua. Echi could be accumulated from the solution and give well-defined electrochemical signals in 0.1 M phosphate buffer solution (pH 7.0) only when Gua was present on the surface of the electrochemically pretreated glass carbon electrode (GCE), suggesting a strong binding of Echi to Gua. All the acquired spectral data showed that a new adduct between Echi and Gua was formed, and two pairs of adjacent intermolecular hydrogen bonds between the Ala backbone atoms in Echi and Gua (Ala-NH to Gua-N3 and Gua-NH2 to Ala-CO) played a dominating role in the interaction. Electrochemistry coupled with spectroscopy techniques could provide a relatively easy way to obtain useful insights into the molecular mechanism of drug-DNA interactions, which should be important in the development of new anticancer drugs with specific base recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular assemblies of liposomes (vesicles) made of diacetylenic lipids and synthetic mannoside derivative glycolipid receptors were successfully used to mimic the molecular recognition occurring between mannose and Escherichia coli. This specific molecular recognition was translated into visible blue-to-red color transition (biochromism) of the polymerized liposomes, readily quantified by UV-visible spectroscopy. Some transition metal cations (Cd2+, Ag+, Cu2+, Fe3+, Zn2+ and Ni2+) and alkali earth metal cations (Ca2+, Mg2+ and Ba2+) were introduced into the system to analyze their effects on specific biochromism. Results showed that the presence of Cd2+, Ag+, Ca2+, Mg2+ and Ba2+ enhanced biochromisin. A possible enhancement mechanism was proposed in the process of bacterial adhesion to host cells. However, Cu2+, Fe3+, Zn2+ and Ni2+ exhibited inhibitory effects that cooperated with diacetylene lipid with a carboxylic group and increased the rigidity of the liposomal outer leaflet, blocking changes in the side chain conformation and electrical structure of polydiacetylene polymer during biochromism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ibuprofen is a well-known nonsteroidal anti-inflammatory drug, which can interact with lipid membranes. In this paper, the interaction of ibuprofen with bilayer lipid membrane was studied by UV-vis spectroscopy, cyclic voltammetry and AC impedance spectroscopy. UV-vis spectroscopy data indicated directly that ibuprofen could interact with lipid vesicles. In electrochemical experiments, ibuprofen displayed a biphasic behavior on bilayer lipid membrane supported on a glassy carbon electrode. It could stabilize the lipid membrane in low concentration, while it induced defects formation, even removed off bilayer lipid membrane from the surface of the electrode with increasing concentration. The mechanism about the interaction between ibuprofen and supported bilayer lipid membrane was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nisin is a positively charged antibacterial peptide that binds to the negatively charged membranes of gram-positive bacteria. The initial interaction of the peptide with the model membrane of negatively charged DPPG (dipalmitoylphosphatidylglycerol) was studied by cyclic voltammetry and a.c. impedance spectroscopy. Nisin could induce pores the supported bilayer lipid membrane, thus, it led to the marker ions Fe(CN)(6)(3-/4-) crossing the lipid membrane and giving the redox reaction on the glassy carbon electrode (GCE). Experimental results suggested that the pore formation on supported bilayer lipid membrane was dependent on the concentration of nisin and it included three main concentration stages: low, middling, high concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles were analyzed by electrochemical and various spectroscopic methods. It was found that upon binding to anionic lipid membrane, the formal potential of. cytochrome c shifted 30 mV negatively indicating an eager redox interaction than that in its native state. This is due to the local alteration of the coordination and the heme crevice. The structural Perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important. This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent free polyaniline emeraldine base(EB) corrosion protection coating was prepared, employing aliphatic polyamine as solvent of EB as well as hardener of epoxy resin. This coating passed 2000h of salt fog test when the EB loading was about 1 wt%. The interaction between EB and iron indicated that EB acted as a "quasi-catalyst" to cause the formation of densed iron oxide film in the interface.