988 resultados para Hydrothermal scheduling problems
Resumo:
The automated timetabling and scheduling is one of the hardest problem areas. This isbecause of constraints and satisfying those constraints to get the feasible and optimizedschedule, and it is already proved as an NP Complete (1) [1]. The basic idea behind this studyis to investigate the performance of Genetic Algorithm on general scheduling problem underpredefined constraints and check the validity of results, and then having comparative analysiswith other available approaches like Tabu search, simulated annealing, direct and indirectheuristics [2] and expert system. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems and later analysis will prove this argument. The programis written in C++ and analysis is done by using variation in various parameters.
Resumo:
A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embraces areas like resource allocation, scheduling, timetabling or vehicle routing. Constraint programming is a form of declarative programming in the sense that instead of specifying a sequence of steps to execute, it relies on properties of the solutions to be found, which are explicitly defined by constraints. The idea of constraint programming is to solve problems by stating constraints which must be satisfied by the solutions. Constraint programming is based on specialized constraint solvers that take advantage of constraints to search for solutions. The success and popularity of complex problem solving tools can be greatly enhanced by the availability of friendly user interfaces. User interfaces cover two fundamental areas: receiving information from the user and communicating it to the system; and getting information from the system and deliver it to the user. Despite its potential impact, adequate user interfaces are uncommon in constraint programming in general. The main goal of this project is to develop a graphical user interface that allows to, intuitively, represent constraint satisfaction problems. The idea is to visually represent the variables of the problem, their domains and the problem constraints and enable the user to interact with an adequate constraint solver to process the constraints and compute the solutions. Moreover, the graphical interface should be capable of configure the solver’s parameters and present solutions in an appealing interactive way. As a proof of concept, the developed application – GraphicalConstraints – focus on continuous constraint programming, which deals with real valued variables and numerical constraints (equations and inequalities). RealPaver, a state-of-the-art solver in continuous domains, was used in the application. The graphical interface supports all stages of constraint processing, from the design of the constraint network to the presentation of the end feasible space solutions as 2D or 3D boxes.
Resumo:
This paper proposes a methodology to incorporate voltage/reactive representation to Short Term Generation Scheduling (STGS) models, which is based on active/reactive decoupling characteristics of power systems. In such approach STGS is decoupled in both Active (AGS) and Reactive (RGS) Generation Scheduling models. AGS model establishes an initial active generation scheduling through a traditional dispatch model. The scheduling proposed by AGS model is evaluated from the voltage/reactive points of view, through the proposed RGS model. RGS is formulated as a sequence of T nonlinear OPF problems, solved separately but taking into account load tracking between consecutive time intervals. This approach considerably reduces computational effort to perform the reactive analysis of the RGS problem as a whole. When necessary, RGS model is capable to propose active generation redispatches, such that critical reactive problems (in which all reactive variables have been insufficient to control the reactive problems) can be overcome. The formulation and solution methodology proposed are evaluated in the IEEE30 system in two case studies. These studies show that the methodology is robust enough to incorporate reactive aspects to STGS problem.
Resumo:
This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses' preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust. © 2013 Springer Science+Business Media New York.
Resumo:
The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
Nel lavoro di tesi qui presentato si indaga l'applicazione di tecniche di apprendimento mirate ad una più efficiente esecuzione di un portfolio di risolutore di vincoli (constraint solver). Un constraint solver è un programma che dato in input un problema di vincoli, elabora una soluzione mediante l'utilizzo di svariate tecniche. I problemi di vincoli sono altamente presenti nella vita reale. Esempi come l'organizzazione dei viaggi dei treni oppure la programmazione degli equipaggi di una compagnia aerea, sono tutti problemi di vincoli. Un problema di vincoli è formalizzato da un problema di soddisfacimento di vincoli(CSP). Un CSP è descritto da un insieme di variabili che possono assumere valori appartenenti ad uno specico dominio ed un insieme di vincoli che mettono in relazione variabili e valori assumibili da esse. Una tecnica per ottimizzare la risoluzione di tali problemi è quella suggerita da un approccio a portfolio. Tale tecnica, usata anche in am- biti come quelli economici, prevede la combinazione di più solver i quali assieme possono generare risultati migliori di un approccio a singolo solver. In questo lavoro ci preoccupiamo di creare una nuova tecnica che combina un portfolio di constraint solver con tecniche di machine learning. Il machine learning è un campo di intelligenza articiale che si pone l'obiettivo di immettere nelle macchine una sorta di `intelligenza'. Un esempio applicativo potrebbe essere quello di valutare i casi passati di un problema ed usarli in futuro per fare scelte. Tale processo è riscontrato anche a livello cognitivo umano. Nello specico, vogliamo ragionare in termini di classicazione. Una classicazione corrisponde ad assegnare ad un insieme di caratteristiche in input, un valore discreto in output, come vero o falso se una mail è classicata come spam o meno. La fase di apprendimento sarà svolta utilizzando una parte di CPHydra, un portfolio di constraint solver sviluppato presso la University College of Cork (UCC). Di tale algoritmo a portfolio verranno utilizzate solamente le caratteristiche usate per descrivere determinati aspetti di un CSP rispetto ad un altro; queste caratteristiche vengono altresì dette features. Creeremo quindi una serie di classicatori basati sullo specifico comportamento dei solver. La combinazione di tali classicatori con l'approccio a portfolio sara nalizzata allo scopo di valutare che le feature di CPHydra siano buone e che i classicatori basati su tali feature siano affidabili. Per giusticare il primo risultato, eettueremo un confronto con uno dei migliori portfolio allo stato dell'arte, SATzilla. Una volta stabilita la bontà delle features utilizzate per le classicazioni, andremo a risolvere i problemi simulando uno scheduler. Tali simulazioni testeranno diverse regole costruite con classicatori precedentemente introdotti. Prima agiremo su uno scenario ad un processore e successivamente ci espanderemo ad uno scenario multi processore. In questi esperimenti andremo a vericare che, le prestazioni ottenute tramite l'applicazione delle regole create appositamente sui classicatori, abbiano risultati migliori rispetto ad un'esecuzione limitata all'utilizzo del migliore solver del portfolio. I lavoro di tesi è stato svolto in collaborazione con il centro di ricerca 4C presso University College Cork. Su questo lavoro è stato elaborato e sottomesso un articolo scientico alla International Joint Conference of Articial Intelligence (IJCAI) 2011. Al momento della consegna della tesi non siamo ancora stati informati dell'accettazione di tale articolo. Comunque, le risposte dei revisori hanno indicato che tale metodo presentato risulta interessante.
Resumo:
Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.
Resumo:
Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.
Resumo:
Car manufacturers increasingly offer delivery programs for the factory pick-up of new cars. Such a program consists of a broad range of event-marketing activities. In this paper we investigate the problem of scheduling the delivery program activities of one day such that the sum of the customers’ waiting times is minimized. We show how to model this problem as a resource-constrained project scheduling problem with nonregular objective function, and we present a relaxation-based beam-search solution heuristic. The relaxations are solved by exploiting a duality relationship between temporal scheduling and min-cost network flow problems. This approach has been developed in cooperation with a German automaker. The performance of the heuristic has been evaluated based on practical and randomly generated test instances.
Resumo:
An Advanced Planning System (APS) offers support at all planning levels along the supply chain while observing limited resources. We consider an APS for process industries (e.g. chemical and pharmaceutical industries) consisting of the modules network design (for long–term decisions), supply network planning (for medium–term decisions), and detailed production scheduling (for short–term decisions). For each module, we outline the decision problem, discuss the specifi cs of process industries, and review state–of–the–art solution approaches. For the module detailed production scheduling, a new solution approach is proposed in the case of batch production, which can solve much larger practical problems than the methods known thus far. The new approach decomposes detailed production scheduling for batch production into batching and batch scheduling. The batching problem converts the primary requirements for products into individual batches, where the work load is to be minimized. We formulate the batching problem as a nonlinear mixed–integer program and transform it into a linear mixed–binary program of moderate size, which can be solved by standard software. The batch scheduling problem allocates the batches to scarce resources such as processing units, workers, and intermediate storage facilities, where some regular objective function like the makespan is to be minimized. The batch scheduling problem is modelled as a resource–constrained project scheduling problem, which can be solved by an efficient truncated branch–and–bound algorithm developed recently. The performance of the new solution procedures for batching and batch scheduling is demonstrated by solving several instances of a case study from process industries.
Resumo:
In this paper, we examine the issue of memory management in the parallel execution of logic programs. We concentrate on non-deterministic and-parallel schemes which we believe present a relatively general set of problems to be solved, including most of those encountered in the memory management of or-parallel systems. We present a distributed stack memory management model which allows flexible scheduling of goals. Previously proposed models (based on the "Marker model") are lacking in that they impose restrictions on the selection of goals to be executed or they may require consume a large amount of virtual memory. This paper first presents results which imply that the above mentioned shortcomings can have significant performance impacts. An extension of the Marker Model is then proposed which allows flexible scheduling of goals while keeping (virtual) memory consumption down. Measurements are presented which show the advantage of this solution. Methods for handling forward and backward execution, cut and roll back are discussed in the context of the proposed scheme. In addition, the paper shows how the same mechanism for flexible scheduling can be applied to allow the efficient handling of the very general form of suspension that can occur in systems which combine several types of and-parallelism and more sophisticated methods of executing logic programs. We believe that the results are applicable to many and- and or-parallel systems.