888 resultados para Grid computing environment
Resumo:
The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.
Resumo:
Computational models for the investigation of flows in deformable tubes are developed and implemented in the open source computing environment OpenFOAM. Various simulations for Newtonian and non-Newtonian fluids under various flow conditions are carried out and analyzed. First, simulations are performed to investigate the flow of a shear-thinning, non-Newtonian fluid in a collapsed elastic tube and comparisons are made with experimental data. The fluid is modeled by means of the Bird-Carreau viscosity law. The computational domain of the deformed tube is constructed from data obtained via computer tomography imaging. Comparison of the computed velocity fields with the ultrasound Doppler velocity profile measurements show good agreement, as does the adjusted pressure drop along the tube's axis. Analysis of the shear rates show that the shear-thinning effect of the fluid becomes relevant in the cross-sections with the biggest deformation. The peristaltic motion is simulated by means of upper and lower rollers squeezing the fluid along a tube. Two frames of reference are considered. In the moving frame the computational domain is fixed and the coordinate system is moving with the roller speed, and in the fixed frame the roller is represented by a deforming mesh. Several two-dimensional simulations are carried out for Newtonian and non-Newtonian fluids. The effect of the shear-thinning behavior of the fluid on the transport efficiency is examined. In addition, the influence of the roller speed and the gap width between the rollers on the xxvii transport efficiency is discussed. Comparison with experimental data is also presented and different types of moving waves are implemented. In addition, the influence of the roller speed and the gap width between the rollers on the transport efficiency is discussed. Comparison with experimental data is also presented and different types of moving waves are implemented.
Resumo:
LHC experiments produce an enormous amount of data, estimated of the order of a few PetaBytes per year. Data management takes place using the Worldwide LHC Computing Grid (WLCG) grid infrastructure, both for storage and processing operations. However, in recent years, many more resources are available on High Performance Computing (HPC) farms, which generally have many computing nodes with a high number of processors. Large collaborations are working to use these resources in the most efficient way, compatibly with the constraints imposed by computing models (data distributed on the Grid, authentication, software dependencies, etc.). The aim of this thesis project is to develop a software framework that allows users to process a typical data analysis workflow of the ATLAS experiment on HPC systems. The developed analysis framework shall be deployed on the computing resources of the Open Physics Hub project and on the CINECA Marconi100 cluster, in view of the switch-on of the Leonardo supercomputer, foreseen in 2023.
Resumo:
L'esperimento ATLAS, come gli altri esperimenti che operano al Large Hadron Collider, produce Petabytes di dati ogni anno, che devono poi essere archiviati ed elaborati. Inoltre gli esperimenti si sono proposti di rendere accessibili questi dati in tutto il mondo. In risposta a questi bisogni è stato progettato il Worldwide LHC Computing Grid che combina la potenza di calcolo e le capacità di archiviazione di più di 170 siti sparsi in tutto il mondo. Nella maggior parte dei siti del WLCG sono state sviluppate tecnologie per la gestione dello storage, che si occupano anche della gestione delle richieste da parte degli utenti e del trasferimento dei dati. Questi sistemi registrano le proprie attività in logfiles, ricchi di informazioni utili agli operatori per individuare un problema in caso di malfunzionamento del sistema. In previsione di un maggiore flusso di dati nei prossimi anni si sta lavorando per rendere questi siti ancora più affidabili e uno dei possibili modi per farlo è lo sviluppo di un sistema in grado di analizzare i file di log autonomamente e individuare le anomalie che preannunciano un malfunzionamento. Per arrivare a realizzare questo sistema si deve prima individuare il metodo più adatto per l'analisi dei file di log. In questa tesi viene studiato un approccio al problema che utilizza l'intelligenza artificiale per analizzare i logfiles, più nello specifico viene studiato l'approccio che utilizza dell'algoritmo di clustering K-means.
Resumo:
Synchronous collaborative systems allow geographically distributed participants to form a virtual work environment enabling cooperation between peers and enriching the human interaction. The technology facilitating this interaction has been studied for several years and various solutions can be found at present. In this paper, we discuss our experiences with one such widely adopted technology, namely the Access Grid. We describe our experiences with using this technology, identify key problem areas and propose our solution to tackle these issues appropriately. Moreover, we propose the integration of Access Grid with an Application Sharing tool, developed by the authors. Our approach allows these integrated tools to utilise the enhanced features provided by our underlying dynamic transport layer.
Resumo:
This paper presents simulation results of the DNP3 communication protocol over a TCP/IP network, for Smart Grid applications. The simulation was performed using the NS-2 network simulator. This study aimed to use the simulation to verify the performance of the DNP3 protocol in a heterogeneous LAN. Analyzing the results it was possible to verify that the DNP3 over a heterogeneous traffic network, with communication channel capacity between 60 and 85 percent, it works well with low packet loss and low delay, however, with traffic values upper 85 percent, the DNP3 usage becomes unfeasible because the information lost, re-transmissions and latency are significantly increased. © 2013 IEEE.
Resumo:
The definition and programming of distributed applications has become a major research issue due to the increasing availability of (large scale) distributed platforms and the requirements posed by the economical globalization. However, such a task requires a huge effort due to the complexity of the distributed environments: large amount of users may communicate and share information across different authority domains; moreover, the “execution environment” or “computations” are dynamic since the number of users and the computational infrastructure change in time. Grid environments, in particular, promise to be an answer to deal with such complexity, by providing high performance execution support to large amount of users, and resource sharing across different organizations. Nevertheless, programming in Grid environments is still a difficult task. There is a lack of high level programming paradigms and support tools that may guide the application developer and allow reusability of state-of-the-art solutions. Specifically, the main goal of the work presented in this thesis is to contribute to the simplification of the development cycle of applications for Grid environments by bringing structure and flexibility to three stages of that cycle through a commonmodel. The stages are: the design phase, the execution phase, and the reconfiguration phase. The common model is based on the manipulation of patterns through pattern operators, and the division of both patterns and operators into two categories, namely structural and behavioural. Moreover, both structural and behavioural patterns are first class entities at each of the aforesaid stages. At the design phase, patterns can be manipulated like other first class entities such as components. This allows a more structured way to build applications by reusing and composing state-of-the-art patterns. At the execution phase, patterns are units of execution control: it is possible, for example, to start or stop and to resume the execution of a pattern as a single entity. At the reconfiguration phase, patterns can also be manipulated as single entities with the additional advantage that it is possible to perform a structural reconfiguration while keeping some of the behavioural constraints, and vice-versa. For example, it is possible to replace a behavioural pattern, which was applied to some structural pattern, with another behavioural pattern. In this thesis, besides the proposal of the methodology for distributed application development, as sketched above, a definition of a relevant set of pattern operators was made. The methodology and the expressivity of the pattern operators were assessed through the development of several representative distributed applications. To support this validation, a prototype was designed and implemented, encompassing some relevant patterns and a significant part of the patterns operators defined. This prototype was based in the Triana environment; Triana supports the development and deployment of distributed applications in the Grid through a dataflow-based programming model. Additionally, this thesis also presents the analysis of a mapping of some operators for execution control onto the Distributed Resource Management Application API (DRMAA). This assessment confirmed the suitability of the proposed model, as well as the generality and flexibility of the defined pattern operators
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.
Resumo:
Statistical computing when input/output is driven by a Graphical User Interface is considered. A proposal is made for automatic control ofcomputational flow to ensure that only strictly required computationsare actually carried on. The computational flow is modeled by a directed graph for implementation in any object-oriented programming language with symbolic manipulation capabilities. A complete implementation example is presented to compute and display frequency based piecewise linear density estimators such as histograms or frequency polygons.
Resumo:
Synchronous collaborative systems allow geographically distributed users to form a virtual work environment enabling cooperation between peers and enriching the human interaction. The technology facilitating this interaction has been studied for several years and various solutions can be found at present. In this paper, we discuss our experiences with one such widely adopted technology, namely the Access Grid [1]. We describe our experiences with using this technology, identify key problem areas and propose our solution to tackle these issues appropriately. Moreover, we propose the integration of Access Grid with an Application Sharing tool, developed by the authors. Our approach allows these integrated tools to utilise the enhanced features provided by our underlying dynamic transport layer.