943 resultados para Green Fluorescent Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. To understand the molecular features underlying autosomal dominant congenital cataracts caused by the deletion mutations W156X in human gamma D-crystallin and W157X in human gamma C-crystallin. METHODS. Normal and mutant cDNAs (with the enhanced green fluorescent protein [EGFP] tag in the front) were cloned into the pEGFP-C1 vector, transfected into various cell lines, and observed under a confocal microscope for EGFP fluorescence. Normal and W156X gamma D cDNAs were also cloned into the pET21a(+) vector, and the recombinant proteins were overexpressed in the BL-21(DE3) pLysS strain of Escherichia coli, purified, and isolated. The conformational features, structural stability, and solubility in aqueous solution of the mutant protein were compared with those of the wild type using spectroscopic methods. Comparative molecular modeling was performed to provide additional structural information. RESULTS. Transfection of the EGFP-tagged mutant cDNAs into several cell lines led to the visualization of aggregates, whereas that of wild-type cDNAs did not. Turning to the properties of the expressed proteins, the mutant molecules show remarkable reduction in solubility. They also seem to have a greater degree of surface hydrophobicity than the wild-type molecules, most likely accounting for self-aggregation. Molecular modeling studies support these features. CONCLUSIONS. The deletion of C-terminal 18 residues of human gamma C-and gamma D-crystallins exposes the side chains of several hydrophobic residues in the sequence to the solvent, causing the molecule to self-aggregate. This feature appears to be reflected in situ on the introduction of the mutants in human lens epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria growing in paper machines can cause several problems. Biofilms detaching from paper machine surfaces may lead to holes and spots in the end product or even break the paper web leading to expensive delays in production. Heat stable endospores will remain viable through the drying section of paper machine, increasing the microbial contamination of paper and board. Of the bacterial species regularly found in the end products, Bacillus cereus is the only one classified as a pathogen. Certain B. cereus strains produce cereulide, the toxin that causes vomiting disease in food poisonings connected to B. cereus. The first aim of this thesis was to identify harmful bacterial species colonizing paper machines and to assess the role of bacteria in the formation of end product defects. We developed quantitative PCR methods for detecting Meiothermus spp. and Pseudoxanthomonas taiwanensis. Using these methods I showed that Meiothermus spp. and Psx. taiwanensis are major biofoulers in paper machines. I was the first to be able to show the connection between end product defects and biofilms in the wet-end of paper machines. I isolated 48 strains of primary-biofilm forming bacteria from paper machines. Based on one of them, strain K4.1T, I described a novel bacterial genus Deinobacterium with Deinobacterium chartae as the type species. I measured the transfer of Bacillus cereus spores from packaging paper into food. To do this, we constructed a green fluorescent protein (GFP) labelled derivative of Bacillus thuringiensis and prepared paper containing spores of this strain. Chocolate and rice were the recipient foods when transfer of the labelled spores from the packaging paper to food was examined. I showed that only minority of the Bacillus cereus spores transferred into food from packaging paper and that this amount is very low compared to the amount of B. cereus naturally occurring in foods. Thus the microbiological risk caused by packaging papers is very low. Until now, the biological function of cereulide for the producer cell has remained unknown. I showed that B. cereus can use cereulide to take up K+ from environment where K+ is scarce: cereulide binds K+ ions outside the cell with high affinity and transports these ions across cell membrane into the cytoplasm. Externally added cereulide increased the growth rate of cereulide producing strains in medium where potassium was growth limiting. In addition, cereulide producing strains outcompeted cereulide non-producing B. cereus in potassium deficient environment, but not when the potassium concentration was high. I also showed that cereulide enhances biofilm formation of B. cereus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analogue of the green fluorescent protein (GFP) luminophore crystallizes from a methanol solution impregnated with dichloromethane, into a pair of chiral crystals. Thermal analysis, fluorescence emission studies, and crystal packing analysis show that the two crystals are different materials. The two polymorphs arise from the rotation of a monosubstituted benzene ring about a C-N bond which results in the formation of two strong bifurcated C-H center dot center dot center dot O intermolecular bonds to oxygen O(6). The color difference has been ascribed to a difference in the packing of the two crystal forms. Theoretical studies supported by low temperature NMR show low kinetic energy barriers (similar to 10 kJ mol(-1)) separating the asymmetric units of the two crystal structures, suggesting that the driving force for the polymorphism could be the result of packing of two different asymmetric units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K K+-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4 pi geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 M corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 M corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T -> Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S -> A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (similar to 9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector bio-distribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h. FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h. FIX: Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a copy of an article published in the Human gene therapy © 2012 copyright Mary Ann Liebert, Inc.; Human gene therapy is available online at: http://online.liebertpub.com.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

290 p. (Bibliogr. 257-290) Correo electrónico de la autora: ana.delpozo@ehu.es

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring electrical activity in large numbers of cells with high spatial and temporal resolution is a fundamental problem for the study of neural development and information processing. To address this problem, we have constructed FlaSh: a novel, genetically-encoded probe that can be used to measure trans-membrane voltage in single cells. We fused a modified green fluorescent protein (GFP) into a voltage-sensitive potassium channel so that voltage dependent rearrangements in the potassium channel induce changes in the fluorescence of GFP. A voltage sensor encoded into DNA has the advantage that it may be introduced into an organism non-invasively and targeted to specific developmental stages, brain regions, cell types, and sub-cellular compartments.

We also describe modifications to FlaSh that shift its color, kinetics, and dynamic range. We used multiple green fluorescent proteins to produce variants of the FlaSh sensor that generate ratiometric signal output via fluorescence resonance energy transfer (FRET). Finally, we describe initial work toward FlaSh variants that are sensitive to G-protein coupled receptor (GPCR) activation. These sensors can be used to design functional assays for receptor activation in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

将pBIN35S-mGFP4质粒转入受体菌DH5α中,扩繁后提取纯化质粒DNA,待棉花盛花期时,用花粉管通道转化方法将其注射到授粉24小时左右的子房中。在被检测的950个发育10~20天左右的幼胚中,发现七个幼胚在蓝光(460~490nm)激发下发出绿色荧光,而对照发出程度不同的红色荧光。将收获的“转化种子”浸泡萌发得到生长5~6天的黄化无菌苗,在200粒种子来源的无菌苗中,检出两棵转化植株。在紫外光照射灯下转化植株发出绿色荧光,其叶片和下胚轴横切面在蓝光激发下也与对照明显不同。PCR及Southern blotting结果均证实转化植株的真实性,从而为花粉管通道转化方法的可行性提供了直接可靠的细胞及分子生物学证据。 将GFPmut1质粒的gfp通过一端平接一端粘接后重组到pBI121的BamH1和Sal1限制性酶切位点从而代替GUS基因,然后将新的重组质粒用三亲交配法转入到LBA4404菌株中得到双元载体,用于棉花下胚轴切段的转化。结果表明,gfp象gus一样可作为报告基因用于农杆菌介导的棉花转化。在对筛选培养基上生长的“抗性愈伤”进一步进行报告基因检测时,只需手持紫外灯就可以检出GFP阳性愈伤,大大减少了工作量和试验费用。 另外,在进行农杆菌转化前的棉花卡那霉素敏感性实验中发现,卡那霉素对棉花下胚轴的愈伤组织形成和增殖均有明显的抑制作用,随其浓度的增加,愈伤组织形成的频率降低,增殖的倍数减小;当浓度增加到100mg/L时,愈伤组织严重褐化,其正常生长受到完全抑制;下胚轴形态学上端切段较下端更易受卡那霉素的影响。