896 resultados para Grasp force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an enhanced relational description for the prescription of the grasp requirement and evolution of the posture of a digital human hand towards satisfaction of this requirement. Precise relational description needs anatomical segmentation of the hand geometry into palmar, dorsal and lateral patches using the palm-plane and joint locations information, and operational segmentation of the object geometry into pull,push and lateral patches with due consideration to the effect of friction. Relational description identifies appropriate patches for a desired grasp condition. Satisfaction of this requirement occurs in two discrete stages,namely,contact establishment and post-contact force exertion for object capturing. Contact establishment occurs in four potentially overlapping phases,namely,re-orientation,transfer,pre- shaping,and closing-in. The novel h and re-orientation phase,enables the palm to face the object in a task sequence scenario, transfer takes the wrist to the ball park ; pre-shaping and close-in finally achieves the contact. In this paper, an anatomically pertinent closed-form formulation is presented for the closing-in phase for identification of the point of contact on the patches ,prescribed by the relational description. Since mere contact does not ensure grasp and slip phenomenon at the point of contact on application of force is a common occurrence, the effect of slip in presence of friction has been studied for 2D and 3D object grasping endeavours and a computational generation of the slip locus is presented.A general slip locus is found to be a non-linear curve even on planar faces.Two varieties of slip phenomena,namely,stabilizing and non-stabilizing slips, and their local characteristics have been identified.Study of the evolution of this slip characteristic over the slip locus exhibited diverse grasping behaviour possibilities. Thus, the relational description paradigm not only makes the requirement specification easy and meaningful but also enables high fidelity hand object interaction studies possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and implementation of a reorientable scanning probe that is capable of two-axis force sensing and control in the 2-D scanning (X-Z) plane. The probe is comprised of three major components, namely a compliant manipulator, laser measurement system, and magnetic actuation system. Control of the position and orientation of the probe tip is realized by means of magnetic actuation combined with a novel structural design. The design of the manipulator's compliance and that of the optical path of the laser measurement system together enable achieving sensitivity to lateral (X) forces that is nearly identical to that of normal (Z) forces. The achieved sensitivity ratio, of about 0.6, is significantly higher than that of conventional scanning probe systems. The theoretical bases for the structural design and the sensitivity of the two-axis force sensing system are presented. Subsequently, fabrication of the manipulator is described and the result of experimental evaluation of the scanning probe's features is discussed. The scanning probe is used to access the vertical and re-entrant features on the two sides of a cylindrical micropipette, which are subsequently scanned by regulating the lateral force of tip-sample interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 mu m along all the three axes. (c) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and immobile dislocation densities and force to explain force fluctuations in nanoindentation experiments. The model includes nucleation, multiplication, and propagation thresholds for mobile dislocations, and other well known dislocation transformation mechanisms. The model predicts all the generic features of nanoindentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plasticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths, the hardness remains nearly constant with a marginal decreasing trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could repolymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifrequency atomic force microscopy is a powerful nanoscale imaging and characterization technique that involves excitation of the atomic force microscope (AFM) probe and measurement of its response at multiple frequencies. This paper reports the design, fabrication, and evaluation of AFM probes with a specified set of torsional eigen-frequencies that facilitate enhancement of sensitivity in multifrequency AFM. A general approach is proposed to design the probes, which includes the design of their generic geometry, adoption of a simple lumped-parameter model, guidelines for determination of the initial dimensions, and an iterative scheme to obtain a probe with the specified eigen-frequencies. The proposed approach is employed to design a harmonic probe wherein the second and the third eigen-frequencies are the corresponding harmonics of the first eigen-frequency. The probe is subsequently fabricated and evaluated. The experimentally evaluated eigen-frequencies and associated mode shapes are shown to closely match the theoretical results. Finally, a simulation study is performed to demonstrate significant improvements in sensitivity to the second-and the third-harmonic spectral components of the tip-sample interaction force with the harmonic probe compared to that of a conventional probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 mu m, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s(-1) were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 mu N on a poly dimethyl siloxane (PDMS) micropillar (50 mu m in diameter, 157 mu m in height) and 415 mu N on a PDMS membrane (3 mm in diameter, 28 mu m thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 mu N on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 +/- 5 N/m, and the elastic modulus is 3.4 +/- 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of `rough eye' surface. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.