960 resultados para Graphic organizer
Resumo:
Spemann’s organizer develops in response to dorsal determinants that act via maternal components of the wnt pathway. The function of siamois, a wnt-inducible homeobox gene, in Spemann’s organizer development was examined by fusion of defined transcriptional regulatory domains to the siamois homeodomain. Similar to native siamois, a VP16 activator fusion induced axis formation, indicating that siamois functions as a transcriptional activator in axis induction. Fusion of the engrailed repressor generated a dominant inhibitor that blocked axis induction by Xwnt8, β-catenin, and siamois, and repressed wnt activation of the goosecoid promoter. Dorsal injection of the engrailed-siamois fusion resulted in complete inhibition of dorsal development and organizer gene expression, an effect rescued by siamois, but not by Xwnt8 or β-catenin. Thus, as a zygotic mediator of maternal dorsal signals, siamois function is required for development of Spemann’s organizer.
Resumo:
The volumic rearrangement of both chromosomes and immunolabeled upstream binding factor in entire well-preserved mitotic cells was studied by confocal microscopy. By using high-quality three-dimensional visualization and tomography, it was possible to investigate interactively the volumic organization of chromosome sets and to focus on their internal characteristics. More particularly, this study demonstrates the nonrandom positioning of metaphase chromosomes bearing nucleolar organizer regions as revealed by their positive upstream binding factor immunolabeling. During the complex morphogenesis of the progeny nuclei from anaphase to late telophase, the equal partitioning of the nucleolar organizer regions is demonstrated by quantification, and their typical nonrandom central positioning within the chromosome sets is revealed.
Resumo:
Metaphase nucleolar organizer regions (NORs), one of four types of chromosome bands, are located on human acrocentric chromosomes. They contain r-chromatin, i.e., ribosomal genes complexed with proteins such as upstream binding factor and RNA polymerase I, which are argyrophilic NOR proteins. Immunocytochemical and cytochemical labelings of these proteins were used to reveal r-chromatin in situ and to investigate its spatial organization within NORs by confocal microscopy and by electron tomography. For each labeling, confocal microscopy revealed small and large double-spotted NORs and crescent-shaped NORs. Their internal three-dimensional (3D) organization was studied by using electron tomography on specifically silver-stained NORs. The 3D reconstructions allow us to conclude that the argyrophilic NOR proteins are grouped as a fiber of 60–80 nm in diameter that constitutes either one part of a turn or two or three turns of a helix within small and large double-spotted NORs, respectively. Within crescent-shaped NORs, virtual slices reveal that the fiber constitutes several longitudinally twisted loops, grouped as two helical 250- to 300-nm coils, each centered on a nonargyrophilic axis of condensed chromatin. We propose a model of the 3D organization of r-chromatin within elongated NORs, in which loops are twisted and bent to constitute one basic chromatid coil.
Resumo:
In zebrafish, the organizer is thought to consist of two regions, the yolk syncytial layer (YSL) and the shield. The dorsal YSL appears to send signals that affect formation of the shield in the overlying mesendoderm. We show here that a domain of dorsal deep cells located between the YSL and the shield is marked by expression of the iro3 gene. As gastrulation proceeds, the iro3 positive domain involutes and migrates to the animal pole. Iro3 expression is regulated by Nodal and bone morphogenic protein antagonists. Overexpression of iro3 induced ectopic expression of shield-specific genes. This effect was mimicked by an Iro3-Engrailed transcriptional repressor domain fusion, whereas an Iro3-VP16 activator domain fusion behaved as a dominant negative or antimorphic form. These results suggest that Iro3 acts as a transcriptional repressor and further implicate the iro3 gene in regulating organizer formation. We propose that the iro3-expressing dorsal deep cells represent a distinct organizer domain that receives signals from the YSL and in turn sends signals to the forming shield, thereby influencing its expansion and differentiation.
Resumo:
Rfp-Y is a second region in the genome of the chicken containing major histocompatibility complex (MHC) class I and II genes. Haplotypes of Rfp-Y assort independently from haplotypes of the B system, a region known to function as a MHC and to be located on chromosome 16 (a microchromosome) with the single nucleolar organizer region (NOR) in the chicken genome. Linkage mapping with reference populations failed to reveal the location of Rfp-Y, leaving Rfp-Y unlinked in a map containing >400 markers. A possible location of Rfp-Y became apparent in studies of chickens trisomic for chromosome 16 when it was noted that the intensity of restriction fragments associated with Rfp-Y increased with increasing copy number of chromosome 16. Further evidence that Rfp-Y might be located on chromosome 16 was obtained when individuals trisomic for chromosome 16 were found to transmit three Rfp-Y haplotypes. Finally, mapping of cosmid cluster III of the molecular map of chicken MHC genes (containing a MHC class II gene and two rRNA genes) to Rfp-Y validated the assignment of Rfp-Y to the MHC/NOR microchromosome. A genetic map can now be drawn for a portion of chicken chromosome 16 with Rfp-Y, encompassing two MHC class I and three MHC class II genes, separated from the B system by a region containing the NOR and exhibiting highly frequent recombination.
Resumo:
To research graphic design in a globalized context it is primordial to consider cultural, social, historical and even anthropological studies to fully understand the aesthetics’ choices made by the designer’s. Being the “Japanese graphic design” a topic still to be better understand in the West, it is mandatory to gather information from primary sources. These data will be analyzed with support of secondary sources of information about Japanese visual communication, social and cultural studies. This paper presents comments about the result of a survey applied to 105 Japanese graphic designers. The survey was designed with 44 questions. The original survey, to better follow this report can be found in www.studiohobo.com/CONVERGENCIAS/Flavio_Hobo_Survey.pdf
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map of Barnstable, Massachusetts. The edition date is 1893 and the map was reprinted in 1907. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map of Barre, Massachusetts. The suvery (ground condition) date is 1887, the edition date is March, 1894 and the map was reprinted in 1942. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map of Becket, Massachusetts. The survey (ground condition) date is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Belchertown, Massachusetts quadrangle. The suvey (ground condition) dates are 1885 and 1887; the edition date is November, 1893. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map entitled Berlin, (N.Y.) which also shows towns and features in Massachusetts. The survey dates (ground condition) for this map are 1885-88, and the edition date is 1890. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Blackstone, Massachusetts quadrangle. The survey date (ground condition) of this map is 1886 and the edition date is October, 1893. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic (DRG) of the historic 15-minute USGS topographic map of the Boston, Massachusetts quadrangle. The survey date (ground condition) of this map ranges from 1898 to 1900, the edition date is July, 1903 and it was reprinted in 1918. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic (DRG) of the historic 15-minute USGS topographic map of the Boston North, Massachusetts quadrangle. The survey date (ground condition) of this map is 1943, the edition date is 1946. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.