938 resultados para Generalized Gaussian-noise


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A procedure has been given for minimizing the total output noise of a Generalized Impedance Converter (GIC), subject to constraints dictated by signal handling capability of the Operational Amplifiers and ease of microcircuit fabrication. The noise reduction is achieved only by the adjustment of RC elements of the GIC, and the total output noise after optimization in the example cited is close to the theoretical lower limit. The output noise of a higher-order filter can be reduced by RC-optimizing the individual GIC's of the active realization. Experimental results on a 20–24 kHz channel bank band-pass filter demonstrate the effectiveness of the above procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a method for measuring the local velocities and first-order variations in velocities in a timevarying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a method for measuring the local velocities and first-order variations in velocities in a time-varying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme [Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The K-user multiple input multiple output (MIMO) Gaussian symmetric interference channel where each transmitter has M antennas and each receiver has N antennas is studied from a generalized degrees of freedom (GDOF) perspective. An inner bound on the GDOF is derived using a combination of techniques such as treating interference as noise, zero forcing (ZF) at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, as a function of the number of antennas and the log INR/log SNR level. Several interesting conclusions are drawn from the derived bounds. It is shown that when K > N/M + 1, a combination of the HK and IA schemes performs the best among the schemes considered. When N/M < K <= N/M + 1, the HK-scheme outperforms other schemes and is found to be GDOF optimal in many cases. In addition, when the SNR and INR are at the same level, ZF-receiving and the HK-scheme have the same GDOF performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. In the first paper (part I) of this series of two, we presented background theory building on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literature, are each associated with a special case of a generalized functional, that, when minimized, solves the PWC denoising problem. It shows how the minimizer can be obtained by a range of computational solver algorithms. In this second paper (part II), using this understanding developed in part I, we introduce several novel PWC denoising methods, which, for example, combine the global behaviour of mean shift clustering with the local smoothing of total variation diffusion, and show example solver algorithms for these new methods. Comparisons between these methods are performed on synthetic and real signals, revealing that our new methods have a useful role to play. Finally, overlaps between the generalized methods of these two papers and others such as wavelet shrinkage, hidden Markov models, and piecewise smooth filtering are touched on.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.