975 resultados para GLOW CURVES
Resumo:
Adjusting autoregressive and mixed models to growth data fits discontinuous functions, which makes it difficult to determine critical points. In this study we propose a new approach to determine the critical stability point of cattle growth using a first-order autoregressive model and a mixed model with random asymptote, using the deterministic portion of the models. Three functions were compared: logistic, Gompertz, and Richards. The Richards autoregressive model yielded the best fit, but the critical growth values were adjusted very early, and for this purpose the Gompertz model was more appropriate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There are many mango cultivars available in different regions. It is about time we analysed their productive behavior in these areas, as well as their phenological performance. This study aimed to evaluate: phenological cycles, thermal time and growth curves of mango fruit cultivars in subtropical conditions. For this study we used the following cultivars: Espada Vermelha, Keitt and Palmer. All the experiments were done at UNESP experimental farm in Sao Manuel (SP), during the agricultural cycle from 2012 to 2013. It was selected 15 branches in each plant, which provided 150 per cultivar. It was determined the number of days of phenological cycles of flowering to fruit ripening, as well as the total number of days to flowering and harvesting. The thermal time was evaluated to each phenological cycle and expressed in accumulation of degree-days. The measurement of the longitudinal diameters (LD) and transverse diameters (TD) of the fruitwere performed in a 12 day’s intervals, from the tenth day after the flowers anthesis, to evaluate the growth curve. Based on the data, it was found that Keitt cultivar requires more days for the fruit to reach physiological maturity and greater accumulation of degree-days to complete its production cycle. The growth curves of the three varieties of fruits have a simple sigmoidal model in function of the days after anthesis.
Resumo:
We compare experimental and predicted differential scanning calorimetry (DSC) curves for palm oil (PO), peanut oil (PeO) and grapeseed oil (GO). The predicted curves are computed from the solid-liquid equilibrium modelling and direct minimization of the Gibbs free energy. For PO, the lower the scan rate, the better the agreement. The temperature transitions of PeO and GO were predicted with an average deviation of -0.72 degrees C and -1.29 degrees C respectively, in relation to experimental data from literature. However, the predicted curves showed other peaks not reported experimentally, as computed DSC curves correspond to equilibrium hypothesis which is reached experimentally for an infinitely small scan rate. The results revealed that predicted transitions temperatures using equilibrium hypotheses can be useful in pre-experimental evaluation of vegetable oils formulations seeking for desired melting profiles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study the caustic, evolute, Minkowski symmetry set and parallels of a smooth and regular curve in the Minkowski plane.
Resumo:
In this work, a version of Fermat's principle for causal curves with the same energy in time orientable Finsler spacetimes is proved. We calculate the second variation of the time arrival functional along a geodesic in terms of the index form associated with the Finsler spacetime Lagrangian. Then the character of the critical points of the time arrival functional is investigated and a Morse index theorem in the context of Finsler spacetime is presented. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765066]
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor number mu(D(f)) of the double point curve D(f) in (C-2, 0) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f(t) : (C-2, 0) -> (C-3, 0) is equivalent to the constancy of both mu(D(f(t))) and mu(f(t)(C-2)boolean AND H) with respect to t, where H subset of C-3 is a generic plane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
We present a new approach to perform calculations with the certain standard classes in cohomology of the moduli spaces of curves. It is based on an important lemma of Ionel relating the intersection theoriy of the moduli space of curves and that of the space of admissible coverings. As particular results, we obtain expressions of Hurwitz numbers in terms of the intersections in the tautological ring, expressions of the simplest intersection numbers in terms of Hurwitz numbers, an algorithm of calculation of certain correlators which are the subject of the Witten conjecture, an improved algorithm for intersections related to the Boussinesq hierarchy, expressions for the Hodge integrals over two-pointed ramification cycles, cut-and-join type equations for a large class of intersection numbers, etc.
Resumo:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.
Resumo:
This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.
Resumo:
Despite the scientific achievement of the last decades in the astrophysical and cosmological fields, the majority of the Universe energy content is still unknown. A potential solution to the “missing mass problem” is the existence of dark matter in the form of WIMPs. Due to the very small cross section for WIMP-nuleon interactions, the number of expected events is very limited (about 1 ev/tonne/year), thus requiring detectors with large target mass and low background level. The aim of the XENON1T experiment, the first tonne-scale LXe based detector, is to be sensitive to WIMP-nucleon cross section as low as 10^-47 cm^2. To investigate the possibility of such a detector to reach its goal, Monte Carlo simulations are mandatory to estimate the background. To this aim, the GEANT4 toolkit has been used to implement the detector geometry and to simulate the decays from the various background sources: electromagnetic and nuclear. From the analysis of the simulations, the level of background has been found totally acceptable for the experiment purposes: about 1 background event in a 2 tonne-years exposure. Indeed, using the Maximum Gap method, the XENON1T sensitivity has been evaluated and the minimum for the WIMP-nucleon cross sections has been found at 1.87 x 10^-47 cm^2, at 90% CL, for a WIMP mass of 45 GeV/c^2. The results have been independently cross checked by using the Likelihood Ratio method that confirmed such results with an agreement within less than a factor two. Such a result is completely acceptable considering the intrinsic differences between the two statistical methods. Thus, in the PhD thesis it has been proven that the XENON1T detector will be able to reach the designed sensitivity, thus lowering the limits on the WIMP-nucleon cross section by about 2 orders of magnitude with respect to the current experiments.