924 resultados para GIANT MAGNETOFOSSILS
Resumo:
To expand the feasibility of applying simple, efficient, non-invasive DNA preparation methods using samples that can be obtained from giant pandas living in the wild, we investigated the use of scent markings and fecal samples. Giant panda-specific oligonucleotide primers were used to amplify a portion of the mitochondrial DNA control region as well as a portion of the mitochondrial DNA cytochrome b gene and tRNA(Thr) gene region. A 196 base pair (bp) fragment in the control region and a 449 bp fragment in the cytochrome b gene and tRNA(Thr) gene were successfully amplified. Sequencing of polymerase chain reaction (PCR) products demonstrated that the two fragments are giant panda sequences. Furthermore, under simulated field conditions we found that DNA can be extracted from fecal samples aged as long as 3 months. Our results suggest that the scent mark and fecal samples are simple, efficient, and easily prepared DNA sources. (C) 1998 Wiley-Liss, Inc.
Resumo:
By using PCR cloning techniques, the DNA sequences of the HMG box regions of six Sox genes (pSox) and the zinc finger domains of two Zfx genes (pZfx) in the giant panda were identified. The giant panda Sox genes fell into two subfamilies, SOX-S1 and SOX-S2. The pSox and pZfx genes of the giant panda were highly homologous to the corresponding genes in mammals and revealed close substitution rates to those in the primates.
Resumo:
The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the Lest, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastocyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (mtDNA) was shown to exist in the interspecies reconstructed blastocyst. The data suggest that (i) the ability of ooplasm to dedifferentiate somatic cells is not species-specific; (ii) there is compatibility between interspecies somatic nucleus and ooplasm during early development of the reconstructed egg.
Resumo:
A method for DNA isolation from early development of blastocyst and further analysis of nuclear and mitochondrial DNA was developed in present study. Total DNA was prepared from interspecies reconstructed blastocyst and a giant panda specific microsatellite locus g(010) was successfully amplified. DNA sequencing of the PCR product showed that two sequences of reconstructed blastocysts are the same as that of positive control giant panda. Our results prove that the nucleus of interspecies reconstructed blastocyst comes from somatic nucleus of donor giant panda.
Resumo:
This study was undertaken to determine structural characteristics within the gonads which might serve as an index to age and longevity and furnish information on the frequency of spawning of an individual.
Resumo:
This report gives information on the anatomy of the internal genital organs of male and female Penaeus monodon.
Sequencing, annotation and comparative analysis of nine BACs of giant panda (Ailuropoda melanoleuca)
Resumo:
A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.
Resumo:
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
Resumo:
Predation on vertebrates is infrequent in gibbons. In a 14-month field study of the central Yunnan black crested gibbon (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China, we observed gibbons attacking, killing and eating giant flying squirre
Resumo:
We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.
Resumo:
Two ciliated protozoa, Balantidium sinensis Nie 1935 and Balantidium andianusi n. sp., were isolated from the feces of a wild Chinese giant salamander (Andrias davidianus) captured from the mountainous area of Shiyan, Hubei Province, Central China in October 2006. It is the first report of Balantidium species inhabiting Cryptobranchoidea amphibians. The occurrence of B. sinensis in A. davidianus should be a new record because the type specimens were first discovered and named by Nie in 1935 from Rana nigromaculata and Rana plancyi. For the lack of enough descriptions of taxonomic features in the previous report, it was re-described in detail and compared with Nie's type specimens and B. giganteum to complete the morphological descriptions in the present work. B. andianusi n. sp. was considered to be a new species based on its unique morphological characteristics, especially the high length/width ratio of the vestibulum (8:1). Comparisons were also made among Balantidium species that were found from urodele amphibians.
Resumo:
The small subunit rDNA sequence of Maristentor dinoferus (Lobban, Schefter, Simpson, Pochon, Pawlowski, and Foissner, 2002) was determined and compared with sequences from other Heterotrichea and Karyorelictea. Maristentor resembles Stentor in basic morphology and had been provisionally assigned to Stentoridae. However, our phylogenetic analyses show that Maristentor is more closely related to Folliculinidae. Our results support the creation of a separate family for Maristentor, Maristentoridae n. fam., and also confirm the phylogenetic grouping of Folliculindae, Stentoridae, Blepharismidae, and Maristentoridae, which we informally call 'stentorids'. Maristentor, rather than Stentor itself, appears to be most significant in understanding the origins of folliculinids from their aloricate ancestors. Our analyses suggest continued uncertainty in the exact placement of the root of heterotrichs with this phylogenetic marker.
Resumo:
A giant magnetocaloric effect was found in series of Mn1-xCoxAs films epitaxied on GaAs (001). The maximum magnetic entropy change caused by a magnetic field of 4 T is as large as 25 J/kg K around room temperature, which is about twice the value of pure MnAs film. The observed small thermal hysteresis is more suitable for practical application. Growing of layered Mn1-xCoxAs films with Co concentration changing gradually may draw layered active magnetic regenerator refrigerators closer to practical application. Our experimental result may provide the possibility for the combination of magnetocaloric effect and microelectronic circuitry.