964 resultados para GENOMIC REARRANGEMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relentless progress in our knowledge of the nature and functional consequences of human genetic variation allows for a better understanding of the protracted battle between pathogens and their human hosts. Multiple polymorphisms have been identified that impact our response to infections or to anti-infective drugs, and some of them are already used in the clinic. However, to make personalized medicine a reality in infectious diseases, a sustained effort is needed not only in research but also in genomic education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this "neighboring effect", we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO SERIES ACCESSION NUMBER: GSE33784, GSE33867.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:: Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. DESIGN:: Descriptive case report. SETTING:: Genetic department and neonatal intensive care unit of a tertiary care children's hospital. INTERVENTIONS:: None. PATIENT:: We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. MEASUREMENTS AND MAIN RESULTS:: An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. CONCLUSIONS:: Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pericentric inversion on chromosome 16 [inv(16)(p13q22)] and related t(16;16)(p13;q22) are recurrent aberrations associated with acute myeloid leukemia (AML) M4 Eo. Both abberations result in a fusion of the core binding factor beta (CBFB) and smooth muscle myosin heavy chain gene (MYH11). A selected genomic 6.9-kb BamHl probe detects MYH11 DNA rearrangements in 18 of 19 inv(16)/t(16;16) patients tested using HindIII digested DNA. The rearranged fragments were not detectable after remission in two cases tested, while they were present after relapse in one of these two cases tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC), such as basal-like, ErbB2-like, and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER) -positive subtypes has been inconsistent. Therefore, refinement of their molecular definition is needed. MATERIALS AND METHODS: We have previously reported a gene expression grade index (GGI), which defines histologic grade based on gene expression profiles. Using this algorithm, we assigned ER-positive BC to either high-or low-genomic grade subgroups and compared these with previously reported ER-positive molecular classifications. As further validation, we classified 666 ER-positive samples into subtypes and assessed their clinical outcome. RESULTS: Two ER-positive molecular subgroups (high and low genomic grade) could be defined using the GGI. Despite tracking a single biologic pathway, these were highly comparable to the previously described luminal A and B classification and significantly correlated to the risk groups produced using the 21-gene recurrence score. The two subtypes were associated with statistically distinct clinical outcome in both systemically untreated and tamoxifen-treated populations. CONCLUSION: The use of genomic grade can identify two clinically distinct ER-positive molecular subtypes in a simple and highly reproducible manner across multiple data sets. This study emphasizes the important role of proliferation-related genes in predicting prognosis in ER-positive BC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY: We present a tool designed for visualization of large-scale genetic and genomic data exemplified by results from genome-wide association studies. This software provides an integrated framework to facilitate the interpretation of SNP association studies in genomic context. Gene annotations can be retrieved from Ensembl, linkage disequilibrium data downloaded from HapMap and custom data imported in BED or WIG format. AssociationViewer integrates functionalities that enable the aggregation or intersection of data tracks. It implements an efficient cache system and allows the display of several, very large-scale genomic datasets. AVAILABILITY: The Java code for AssociationViewer is distributed under the GNU General Public Licence and has been tested on Microsoft Windows XP, MacOSX and GNU/Linux operating systems. It is available from the SourceForge repository. This also includes Java webstart, documentation and example datafiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The role of chromosomal rearrangements in the speciation process is much debated and many theoretical models have been developed. The shrews of the Sorex araneus group offer extraordinary opportunities to study the relationship between chromosomal variation and speciation. Indeed, this group of morphologically very similar species received a great deal of attention due to its karyotypic variability, which is mainly attributed to Robertsonian fusions. To explore the impact of karyotypic changes on genetic differentiation, we first studied the relationship between genetic and karyotypic structure among Alpine species and among chromosome races of the S. araneus group using Bayesian admixture analyses. The results of these analyses confirmed the taxonomic status of the studied species even though introgression can still be detected between species. Moreover, the strong spatial sub-structure highlighted the role of historical factors (e.g. geographical isolation) on genetic structure. Next, we studied gene flow at the chromosome level to address the question of the impact of chromosomal rearrangements on genetic differentiation. We used flow sorted chromosomes from three different karyotypic taxa of the S. araneus group to map microsatellite markers at the chromosóme arm level. We have been able to map 24 markers and to show that the karyotypic organisation of these taxa is well conserved, which suggests that these markers can be used for further inter-taxa studies. A general prediction of chromosomal speciation models is that genetic differentiation between two taxa should be larger across rearranged chromosomes than across chromosomes common to both taxa. We combined two approaches using mapped microsatellites to test this prediction. First, we studied the genetic differentiation among five shrew taxa placed at different evolutionary levels (i.e. within and among species). In this large scale study, we detected an overall significant difference in genetic structure between rearranged vs. common chromosomes. Moreover, this effect varied among pairwise comparisons, which allowed us to differentiate the role of the karyotypic complexity of hybrids and of the evolutionary divergence between taxa. Secondly, we compared the levels of gene flow measured across common vs. rearranged chromosomes in two karyotypically different hybrid zones (strong vs. low complexity of hybrids), which show similar levels of genetic structure. We detected a significantly stronger genetic structure across rearranged chromosomes in the hybrid zone showing the highest level of hybrid complexity. The large variance observed among loci suggested that other factors, such as the position of markers within the chromosome, also certainly affects genetic structure. In conclusion, our results strongly support the role of chromosomal rearrangements in the reproductive barrier and suggest their importance in speciation process of the S. araneus group. RESUME Le rôle des réarrangements chromosomiques dans les processus de spéciation est fortement débattu et de nombreux modèles théoriques ont été développés sur le sujet. Les musaraignes du groupe Sorex araneus présentent de nombreuses opportunités pour étudier les relations entre les variations chromosomiques et la spéciation. En effet, ce groupe d'espèces morphologiquement très proches a attiré l'attention des chercheurs en raison de sa variabilité caryotypique principalement attribuée à des fusions Robertsoniennes. Pour explorer l'impact des changements caryotypiques sur la différenciation génétique, nous avons tout d'abord étudié les relations entre la structure génétique et caryotypique de races chromosomiques et d'espèces alpine du groupe S. araneus en utilisant des analyses Bayesiennes d' « admixture ». Les résultats de ces analyses ont confirmé le statut taxonomique des espèces étudiées bien que nous ayons détecté de l'introgression entre espèces. L'observation d'une sous structure spatiale relativement forte souligne l'importance des facteurs historiques (telle que l'isolation géographique) sur la structure génétique de ce groupe. Ensuite, nous avons étudié le flux de gène au niveau des chromosomes pour aborder de manière directe la question de l'impact des réarrangements chromosomiques sur la différenciation génétique. En conséquence, nous avons utilisé des tris de chromosomes de trois taxons du groupe S. araneus pour localiser des marqueurs microsatellites au niveau du bras chromosomique. Au cours de cette étude, nous avons pu localiser 24 marqueurs et montrer une forte conservation dans l'organisation du caryotype de ces taxa. Ce résultat suggère que leur utilisation est appropriée pour des études entre taxa. Une prédiction générale à tous les modèles de spéciation chromosomique correspond à la plus grande différenciation génétique des chromosomes réarrangés que des chromosomes communs. Nous avons combiné deux approches utilisant des microsatellites localisés au niveau du bras chromosomique pour tester cette prédiction. Premièrement, nous avons étudié la différenciation génétique entre cinq taxa du groupe S. araneus se trouvant à des niveaux évolutifs différents (i.e. à l'intérieur et entre espèce). Au cours de cette étude, nous avons détecté une différenciation globale significativement plus élevée sur les chromosomes réarrangés. Cet effet varie entre les comparaisons, ce qui nous a permis de souligner le rôle de la complexité caryotypique des hybrides et du niveau de divergence évolutive entre taxa. Deuxièmement, nous avons comparé le flux de gènes des chromosomes communs et réarrangés dans deux zones d'hybridation caryotypiquement différentes (forte vs. Faible complexité des hybrides) mais présentant un niveau de différenciation génétique similaire. Ceci nous a permis de détecter une structure génétique significativement plus élevée sur les chromosomes réarrangés au centre de la zone d'hybridation présentant la plus grande complexité caryotypic. La forte variance observée entre loci souligne en outre le fait que d'autres facteurs, tel que la position du marqueur sur le chromosome, affectent probablement aussi la structure génétique mesurée. En conclusion, nos résultats supportent fortement le rôle des réarrangements chromosomiques dans la barrière reproductive entre espèces ainsi que leur importance dans les processus de spéciation des musaraignes du groupe S. araneus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of the Human Immunodeficiency Virus (HIV) genetic information into the host genome is fundamental for its replication and long-term persistence in the host. Isolating and characterizing the integration sites can be useful for obtaining data such as identifying the specific genomic location of integration or understanding the forces dictating HIV integration site selection. The methods outlined in this article describe a highly efficient and precise technique for identifying HIV integration sites in the host genome on a small scale using molecular cloning techniques and standard sequencing or on a massive scale using 454 pyrosequencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. RESULTS: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. CONCLUSIONS: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.