931 resultados para Formation on Psychology
Resumo:
Summary: Rut formation on peatland
Resumo:
BACKGROUND AND PURPOSE: Most of the neuropathological studies in brain aging were based on the assumption of a symmetrical right-left hemisphere distribution of both Alzheimer disease and vascular pathology. To explore the impact of asymmetrical lesion formation on cognition, we performed a clinicopathological analysis of 153 cases with mixed pathology except macroinfarcts. METHODS: Cognitive status was assessed prospectively using the Clinical Dementia Rating scale; neuropathological evaluation included assessment of Braak neurofibrillary tangle and Ass deposition staging, microvascular pathology, and lacunes. The right-left hemisphere differences in neuropathological scores were evaluated using the Wilcoxon signed rank test. The relationship between the interhemispheric distribution of lesions and Clinical Dementia Rating scores was assessed using ordered logistic regression. RESULTS: Unlike Braak neurofibrillary tangle and Ass deposition staging, vascular scores were significantly higher in the left hemisphere for all Clinical Dementia Rating scores. A negative relationship was found between Braak neurofibrillary tangle, but not Ass staging, and vascular scores in cases with moderate to severe dementia. In both hemispheres, Braak neurofibrillary tangle staging was the main determinant of cognitive decline followed by vascular scores and Ass deposition staging. The concomitant predominance of Alzheimer disease and vascular pathology in the right hemisphere was associated with significantly higher Clinical Dementia Rating scores. CONCLUSIONS: Our data show that the cognitive impact of Alzheimer disease and vascular lesions in mixed cases may be assessed unilaterally without major information loss. However, interhemispheric differences and, in particular, increased vascular and Alzheimer disease burden in the right hemisphere may increase the risk for dementia in this group.
Resumo:
The objective of this work was to study the in vitro organogenesis of Citrullus lanatus, by the induction of adventitious buds in cotyledon segments cultured in medium supplemented with cytokinin. Explants were collected from one, three and five-day-old in vitro germinated seedlings, considering the distal and proximal cotyledon regions. The data obtained showed that in vitro organogenesis of watermelon occurred with higher efficiency, when cotyledon segments from the proximal region collected from three-day-old seedlings were cultivated in medium MS, supplemented with BAP (1 mg L-1) and coconut water (10%). The histological study showed that the organogenesis occurs directly, without callus formation, on epidermal and subepidermal layers of the explants. Adventitious shoots were characterized by the development of shoot apical meristem and leaf primordia. The formation of protuberances, that do not develop into adventitious buds, was also observed.
Resumo:
The objective of this work was to investigate the effect of dietary supplementation with essential fatty acids on the kinetics of macrophage accumulation and giant cell formation in Nile tilapia (Oreochromis niloticus). The supplementation sources were soybean oil (SO, source of omega 6, n‑6) and linseed oil (LO, source of omega 3, n‑3), in the following proportions: 100% SO; 75% SO + 25% LO; 50% SO + 50% LO; 25% SO + 75% LO; and 100% LO (four replicates per treatment). After a feeding period of three months, growth performance was evaluated, and glass coverslips were implanted into the subcutaneous connective tissue of fish, being removed for examination at 2, 4, 6, and 8 days after implantation. Growth performance did not differ between treatments. Fish fed 100% linseed oil diet had the greatest macrophage accumulation and the fastest Langhans cell formation on the sixth day. On the eighth day, Langhans cells were predominant on the coverslips implanted in the fish feed 75 and 100% linseed oil. n‑3 fatty acids may contribute to macrophage recruitment and giant cell formation in fish chronic inflammatory response to foreign body.
Resumo:
AIMS: To evaluate the very long-term risk of recurrent thromboembolic events in patients treated by percutaneous PFO closure. METHODS AND RESULTS: Between 1998 and 2008, a total of 232 consecutive patients with PFO and a high suspicion of paradoxical embolism were treated by percutaneous closure. The following major events were observed during hospitalisation: implantation failure (one patient) and appearance of an acute left-sided device thrombus requiring surgery (one patient). The primary endpoint of the study was a recurrent embolic event beyond at least five years' follow-up. During a mean follow-up of 7.6±2.4 years, this event occurred in five patients, representing a 0.28% annual/patient risk. Other major complications during follow-up were the following: late thrombus formation on the device (two patients) and transient atrial fibrillation (15 patients). Three patients died during follow-up from cardiovascular causes considered not related to the index procedure. The PFO was judged closed on follow-up echocardiography in 92.3% of patients. CONCLUSIONS: Long-term follow-up following percutaneous PFO closure for presumed paradoxical embolism reveals very low recurrence rates. This observation should be put in perspective with recent published randomised trials comparing percutaneous closure and medical therapy.
Resumo:
We report the synthesis and study of a new series of oxovanadium (IV) dithiocarbamate adducts and derivatives with pyridine and cyclohexyl, di-iso-butyl, di-n-propyl, anilin, morpholin, piperidin and di-iso-propyl amines. The complexes have been characterized by analytical, magnetochemical, IR, visible-UV spectral and thermal studies, and are assigned the formulas [VO(L)2].py, where L=cyclohexyl, di-iso-butyl, di-n-propyl, anilin dithiocarbamate and [VO(OH)(L)(py)2]OH.H2O (L=morpholin, piperidin and di-iso-propyl dithiocarbamate). The effect of the adduct formation on the pV=0 bound is discussed in terms of the IR (V=O, V-S and V-N stretching frequencies) and electronic spectra (d-d transitions).
Resumo:
Zeolite catalysts have been extensively used in petroleum refining and the chemical industry although they are deactivated by coke deposition. In order to find the best condition to avoid deactivation, the coke formation on H-mordenite was studied in this work. The coke was produced during benzene transalkylation with C9+ aromatics, under several reaction conditions. It was found that hydrogenated coke was produced in all samples without affecting the selectivity of toluene and xylene formation. This is explained in terms of the mordenite structure and the presence of hydrogen.
Resumo:
Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.
Resumo:
The search for new renewable materials has intensified in recent years. Pulp and paper mill process streams contain a number of potential compounds which could be used in biofuel production and as raw materials in the chemical, food and pharmaceutical industries. Prior to utilization, these compounds require separation from other compounds present in the process stream. One feasible separation technique is membrane filtration but to some extent, fouling still limits its implementation in pulp and paper mill applications. To mitigate fouling and its effects, foulants and their fouling mechanisms need to be well understood. This thesis evaluates fouling in filtration of pulp and paper mill process streams by means of polysaccharide model substance filtrations and by development of a procedure to analyze and identify potential foulants, i.e. wood extractives and carbohydrates, from fouled membranes. The model solution filtration results demonstrate that each polysaccharide has its own fouling mechanism, which also depends on the membrane characteristics. Polysaccharides may foul the membranes by adsorption and/or by gel/cake layer formation on the membrane surface. Moreover, the polysaccharides interact, which makes fouling evaluation of certain compound groups very challenging. Novel methods to identify wood extractive and polysaccharide foulants are developed in this thesis. The results show that it is possible to extract and identify wood extractives from membranes fouled in filtration of pulp and paper millstreams. The most effective solvent was found to be acetone:water (9:1 v/v) because it extracted both lipophilic extractives and lignans at high amounts from the fouled membranes and it was also non-destructive for the membrane materials. One hour of extraction was enough to extract wood extractives at high amounts for membrane samples with an area of 0.008 m2. If only qualitative knowledge of wood extractives is needed a simplified extraction procedure can be used. Adsorption was the main fouling mechanism in extractives-induced fouling and dissolved fatty and resin acids were mostly the reason for the fouling; colloidal fouling was negligible. Both process water and membrane characteristics affected extractives-induced fouling. In general, the more hydrophilic regenerated cellulose (RC) membrane fouled less that the more hydrophobic polyethersulfone (PES) and polyamide (PA) membranes independent of the process water used. Monosaccharide and uronic acid units could also be identified from the fouled synthetic polymeric membranes. It was impossible to analyze all monosaccharide units from the RC membrane because the analysis result obtained contained degraded membrane material. One of the fouling mechanisms of carbohydrates was adsorption. Carbohydrates were not potential adsorptive foulants to the sameextent as wood extractives because their amount in the fouled membranes was found to be significantly lower than the amount of wood extractives.
Resumo:
The high seedlings quality is essential for deployment of homogeneous orchards. This study evaluated the baruzeiro (Dipteryx alata Vog) seedlings formation on different substrates within protected environments. It was used substrates with100% of cattle manure; 100% of cassava stems; 100% of vermiculite; 50% of cattle manure + 50% of cassava stems; 50% of cattle manure + 50% of vermiculite; 50% of cassava stems + 50% of vermiculite; and + ⅓ of cattle manure + ⅓ of cassava stems + ⅓ of vermiculite. These substrates were tested in protected areas: greenhouse; black shade net of 50% shading; and aluminized thermo-reflective screen of 50% shading. A completely randomized experimental design with five replicates of four plants was adopted. Initially, data were submitted to analysis of individual variance of the substrates, in each environment of cultivation, then performing the evaluation of the residual mean square and the analysis of these environments together for comparison. The best substrate for baruzeiro seedlings was pure vermiculite. The substrates with 100% of manure and the substrate with 33.33% of the mixed studied materials can be used for seedlings formation. The environment with screen can be indicated for the production of baruzeiro seedlings, since it gave vigor to the seedlings.
Resumo:
The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.
Resumo:
The possible role of histamine receptors in the hippocampal formation on the exploratory motivation and emotionality of the rat was studied. An elevated asymmetric plus-maze composed of 4 different arms (no walls, single high wall, high and low walls and two high walls) arranged at 90o angles was used. The exploration score, considered to be an index of exploratory motivation, and the permanency score, considered to be an index of emotionality (anxiety), were determined. Histamine was administered locally into the ventral hippocampus at three different doses (9, 45 and 90 nmol). Another group of rats was also microinjected with 45 nmol of pyrilamine (a histamine H1 receptor antagonist) or ranitidine (a histamine H2 receptor antagonist) in addition to 9 nmol of histamine in order to identify the possible type of histamine receptor involved. Histamine administration significantly inhibited the exploration score and increased the permanency score at the doses of 9 and 45 nmol in two of four arms. These effects were completely blocked by the administration of either histamine receptor antagonist. The present results suggest that in the hippocampal formation histamine inhibits exploratory motivation and decreases emotionality by activating both types of histamine receptors. Also, the elevated asymmetric plus-maze appears to be a suitable technique to quantify exploration and possibly" anxiety"
Resumo:
Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.