958 resultados para First-order
Resumo:
This study investigates the feasibility of predicting the momentamplification in beam-column elements of steel moment-resisting frames using the structure's natural period. Unlike previous methods, which perform moment-amplification on a story-by-story basis, this study develops and tests two models that aim to predict a global amplification factor indicative of the largest relevant instance of local moment amplification in the structure. To thisend, a variety of two-dimensional frames is investigated using first and secondorder finite element analysis. The observed moment amplification is then compared with the predicted amplification based on the structure's natural period, which is calculated by first-order finite element analysis. As a benchmark, design moment amplification factors are calculated for each story using the story stiffness approach, and serve to demonstrate the relativeconservatism and accuracy of the proposed models with respect to current practice in design. The study finds that the observed moment amplification factors may vastly exceed expectations when internal member stresses are initially very small. Where the internal stresses are small relative to the member capacities, thesecases are inconsequential for design. To qualify the significance of the observed amplification factors, two parameters are used: the second-order moment normalized to the plastic moment capacity, and the combined flexural and axial stress interaction equations developed by AISC
Resumo:
La Energía eléctrica producida mediante tecnología eólica flotante es uno de los recursos más prometedores para reducir la dependencia de energía proveniente de combustibles fósiles. Esta tecnología es de especial interés en países como España, donde la plataforma continental es estrecha y existen pocas áreas para el desarrollo de estructuras fijas. Entre los diferentes conceptos flotantes, esta tesis se ha ocupado de la tipología semisumergible. Estas plataformas pueden experimentar movimientos resonantes en largada y arfada. En largada, dado que el periodo de resonancia es largo estos puede ser inducidos por efectos de segundo orden de deriva lenta que pueden tener una influencia muy significativa en las cargas en los fondeos. En arfada las fuerzas de primer orden pueden inducir grandes movimientos y por tanto la correcta determinación del amortiguamiento es esencial para la analizar la operatividad de la plataforma. Esta tesis ha investigado estos dos efectos, para ello se ha usado como caso base el diseño de una plataforma desarrollada en el proyecto Europeo Hiprwind. La plataforma se compone de 3 columnas cilíndricas unidas mediante montantes estructurales horizontales y diagonales, Los cilindros proporcionan flotabilidad y momentos adrizante. A la base de cada columna se le ha añadido un gran “Heave Plate” o placa de cierre. El diseño es similar a otros diseños previos (Windfloat). Se ha fabricado un modelo a escala de una de las columnas para el estudio detallado del amortiguamiento mediante oscilaciones forzadas. Las dimensiones del modelo (1m diámetro en la placa de cierre) lo hacen, de los conocidos por el candidato, el mayor para el que se han publicado datos. El diseño del cilindro se ha realizado de tal manera que permite la fijación de placas de cierre planas o con refuerzo, ambos modelos se han fabricado y analizado. El modelo con refuerzos es una reproducción exacta del diseño a escala real incluyendo detalles distintivos del mismo, siendo el más importante la placa vertical perimetral. Los ensayos de oscilaciones forzadas se han realizado para un rango de frecuencias, tanto para el disco plano como el reforzado. Se han medido las fuerzas durante los ensayos y se han calculado los coeficientes de amortiguamiento y de masa añadida. Estos coeficientes son necesarios para el cálculo del fondeo mediante simulaciones en el dominio del tiempo. Los coeficientes calculados se han comparado con la literatura existente, con cálculos potenciales y por ultimo con cálculos CFD. Para disponer de información relevante para el diseño estructural de la plataforma se han medido y analizado experimentalmente las presiones en la parte superior e inferior de cada placa de cierre. Para la correcta estimación numérica de las fuerzas de deriva lenta en la plataforma se ha realizado una campaña experimental que incluye ensayos con modelo cautivo de la plataforma completa en olas bicromaticas. Pese a que estos experimentos no reproducen un escenario de oleaje realista, los mismos permiten una verificación del modelo numérico mediante la comparación de fuerzas medidas en el modelo físico y el numérico. Como resultados de esta tesis podemos enumerar las siguientes conclusiones. 1. El amortiguamiento y la masa añadida muestran una pequeña dependencia con la frecuencia pero una gran dependencia con la amplitud del movimiento. siendo coherente con investigaciones existentes. 2. Las medidas con la placa de cierre reforzada con cierre vertical en el borde, muestra un amortiguamiento significativamente menor comparada con la placa plana. Esto implica que para ensayos de canal es necesario incluir estos detalles en el modelo. 3. La masa añadida no muestra grandes variaciones comparando placa plana y placa con refuerzos. 4. Un coeficiente de amortiguamiento del 6% del crítico se puede considerar conservador para el cálculo en el dominio de la frecuencia. Este amortiguamiento es equivalente a un coeficiente de “drag” de 4 en elementos de Morison cuadráticos en las placas de cierre usadas en simulaciones en el dominio del tiempo. 5. Se han encontrado discrepancias en algunos valores de masa añadida y amortiguamiento de la placa plana al comparar con datos publicados. Se han propuesto algunas explicaciones basadas en las diferencias en la relación de espesores, en la distancia a la superficie libre y también relacionadas con efectos de escala. 6. La presión en la placa con refuerzos son similares a las de la placa plana, excepto en la zona del borde donde la placa con refuerzo vertical induce una gran diferencias de presiones entre la cara superior e inferior. 7. La máxima diferencia de presión escala coherentemente con la fuerza equivalente a la aceleración de la masa añadida distribuida sobre la placa. 8. Las masas añadidas calculadas con el código potencial (WADAM) no son suficientemente precisas, Este software no contempla el modelado de placas de pequeño espesor con dipolos, la poca precisión de los resultados aumenta la importancia de este tipo de elementos al realizar simulaciones con códigos potenciales para este tipo de plataformas que incluyen elementos de poco espesor. 9. Respecto al código CFD (Ansys CFX) la precisión de los cálculos es razonable para la placa plana, esta precisión disminuye para la placa con refuerzo vertical en el borde, como era de esperar dado la mayor complejidad del flujo. 10. Respecto al segundo orden, los resultados, en general, muestran que, aunque la tendencia en las fuerzas de segundo orden se captura bien con los códigos numéricos, se observan algunas reducciones en comparación con los datos experimentales. Las diferencias entre simulaciones y datos experimentales son mayores al usar la aproximación de Newman, que usa únicamente resultados de primer orden para el cálculo de las fuerzas de deriva media. 11. Es importante remarcar que las tendencias observadas en los resultados con modelo fijo cambiarn cuando el modelo este libre, el impacto que los errores en las estimaciones de fuerzas segundo orden tienen en el sistema de fondeo dependen de las condiciones ambientales que imponen las cargas ultimas en dichas líneas. En cualquier caso los resultados que se han obtenido en esta investigación confirman que es necesaria y deseable una detallada investigación de los métodos usados en la estimación de las fuerzas no lineales en las turbinas flotantes para que pueda servir de guía en futuros diseños de estos sistemas. Finalmente, el candidato espera que esta investigación pueda beneficiar a la industria eólica offshore en mejorar el diseño hidrodinámico del concepto semisumergible. ABSTRACT Electrical power obtained from floating offshore wind turbines is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. The concept is the most competitive in countries, such as Spain, where the continental shelf is narrow and does not provide space for fixed structures. Among the different floating structures concepts, this thesis has dealt with the semisubmersible one. Platforms of this kind may experience resonant motions both in surge and heave directions. In surge, since the platform natural period is long, such resonance can be excited with second order slow drift forces and may have substantial influence on mooring loads. In heave, first order forces can induce significant motion, whose damping is a crucial factor for the platform downtime. These two topics have been investigated in this thesis. To this aim, a design developed during HiPRWind EU project, has been selected as reference case study. The platform is composed of three cylindrical legs, linked together by a set of structural braces. The cylinders provide buoyancy and restoring forces and moments. Large circular heave plates have been attached to their bases. The design is similar to other documented in literature (e.g. Windfloat), which implies outcomes could have a general value. A large scale model of one of the legs has been built in order to study heave damping through forced oscillations. The final dimensions of the specimen (one meter diameter discs) make it, to the candidate’s knowledge, the largest for which data has been published. The model design allows for the fitting of either a plain solid heave plate or a flapped reinforced one; both have been built. The latter is a model scale reproduction of the prototype heave plate and includes some distinctive features, the most important being the inclusion of a vertical flap on its perimeter. The forced oscillation tests have been conducted for a range of frequencies and amplitudes, with both the solid plain model and the vertical flap one. Forces have been measured, from which added mass and damping coefficients have been obtained. These are necessary to accurately compute time-domain simulations of mooring design. The coefficients have been compared with literature, and potential flow and CFD predictions. In order to provide information for the structural design of the platform, pressure measurements on the top and bottom side of the heave discs have been recorded and pressure differences analyzed. In addition, in order to conduct a detailed investigation on the numerical estimations of the slow-drift forces of the HiPRWind platform, an experimental campaign involving captive (fixed) model tests of a model of the whole platform in bichromatic waves has been carried out. Although not reproducing the more realistic scenario, these tests allowed a preliminary verification of the numerical model based directly on the forces measured on the structure. The following outcomes can be enumerated: 1. Damping and added mass coefficients show, on one hand, a small dependence with frequency and, on the other hand, a large dependence with the motion amplitude, which is coherent with previously published research. 2. Measurements with the prototype plate, equipped with the vertical flap, show that damping drops significantly when comparing this to the plain one. This implies that, for tank tests of the whole floater and turbine, the prototype plate, equipped with the flap, should be incorporated to the model. 3. Added mass values do not suffer large alterations when comparing the plain plate and the one equipped with a vertical flap. 4. A conservative damping coefficient equal to 6% of the critical damping can be considered adequate for the prototype heave plate for frequency domain analysis. A corresponding drag coefficient equal to 4.0 can be used in time domain simulations to define Morison elements. 5. When comparing to published data, some discrepancies in added mass and damping coefficients for the solid plain plate have been found. Explanations have been suggested, focusing mainly on differences in thickness ratio and distance to the free surface, and eventual scale effects. 6. Pressures on the plate equipped with the vertical flap are similar in magnitude to those of the plain plate, even though substantial differences are present close to the edge, where the flap induces a larger pressure difference in the reinforced case. 7. The maximum pressure difference scales coherently with the force equivalent to the acceleration of the added mass, distributed over the disc surface. 8. Added mass coefficient values predicted with the potential solver (WADAM) are not accurate enough. The used solver does not contemplate modeling thin plates with doublets. The relatively low accuracy of the results highlights the importance of these elements when performing potential flow simulations of offshore platforms which include thin plates. 9. For the full CFD solver (Ansys CFX), the accuracy of the computations is found reasonable for the plain plate. Such accuracy diminishes for the disc equipped with a vertical flap, an expected result considering the greater complexity of the flow. 10. In regards to second order effects, in general, the results showed that, although the main trend in the behavior of the second-order forces is well captured by the numerical predictions, some under prediction of the experimental values is visible. The gap between experimental and numerical results is more pronounced when Newman’s approximation is considered, making use exclusively of the mean drift forces calculated in the first-order solution. 11. It should be observed that the trends observed in the fixed model test may change when the body is free to float, and the impact that eventual errors in the estimation of the second-order forces may have on the mooring system depends on the characteristics of the sea conditions that will ultimately impose the maximum loads on the mooring lines. Nevertheless, the preliminary results obtained in this research do confirm that a more detailed investigation of the methods adopted for the estimation of the nonlinear wave forces on the FOWT would be welcome and may provide some further guidance for the design of such systems. As a final remark, the candidate hopes this research can benefit the offshore wind industry in improving the hydrodynamic design of the semi-submersible concept.
Resumo:
The study of the large-sample distribution of the canonical correlations and variates in cointegrated models is extended from the first-order autoregression model to autoregression of any (finite) order. The cointegrated process considered here is nonstationary in some dimensions and stationary in some other directions, but the first difference (the “error-correction form”) is stationary. The asymptotic distribution of the canonical correlations between the first differences and the predictor variables as well as the corresponding canonical variables is obtained under the assumption that the process is Gaussian. The method of analysis is similar to that used for the first-order process.
Resumo:
By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid-crystalline phase diagram: (i) a higher density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction and (ii) a lower density cholesteric region with fluid-like positional order. X-ray scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a sixfold azimuthal modulation of the first-order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order, which had been expected from the change in optical birefringence patterns and which is consistent with a rapid onset of molecular positional disorder. This change in order was previously inferred from intermolecular force measurements and is now confirmed by 31P NMR. Controlled reversible swelling and compaction under osmotic stress, spanning a range of densities between approximately 120 mg/ml to approximately 600 mg/ml, allow measurement of the free-energy changes throughout each phase and at the phase transition, essential information for theories of liquid-crystalline states.
Resumo:
Thesis--Illinois.
Resumo:
The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benet from second-order sensitivity. Analysis of the first-and second-order contents of natural images suggests that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based on initially separate first-and second-order channels that are combined within orientation and subsequently across orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LM-AM when presented in a plaid. Thus, the model sees LM -AM as flat in these circumstances. We conclude that second-order vision plays a key role in disambiguating the origin of luminance changes within an image. © ARVO.
Resumo:
AMS subject classification: Primary 34A60, Secondary 49K24.
Resumo:
2000 Mathematics Subject Classification: 62G32, 62G20.
Resumo:
We present, for the first time, a detailed investigation of the impact of second order co-propagating Raman pumping on long-haul 100G WDM DP-QPSK coherent transmission of up to 7082 km using Raman fibre laser based configurations. Signal power and noise distributions along the fibre for each pumping scheme were characterised both numerically and experimentally. Based on these pumping schemes, the Q factor penalties versus co-pump power ratios were experimentally measured and quantified. A significant Q factor penalty of up to 4.15 dB was observed after 1666 km using symmetric bidirectional pumping, compared with counter-pumping only. Our results show that whilst using co-pumping minimises the intra-cavity signal power variation and amplification noise, the Q factor penalty with co-pumping was too great for any advantage to be seen. The relative intensity noise (RIN) characteristics of the induced fibre laser and the output signal, and the intra-cavity RF spectra of the fibre laser are also presented. We attribute the Q factor degradation to RIN induced penalty due to RIN being transferred from the first order fibre laser and second order co-pump to the signal. More importantly, there were two different fibre lasing regimes contributing to the amplification. It was random distributed feedback lasing when using counter-pumping only and conventional Fabry-Perot cavity lasing when using all bidirectional pumping schemes. This also results in significantly different performances due to different laser cavity lengths for these two classes of laser.
Resumo:
We experimentally investigate three Raman fibre laser based amplification techniques with second-order bidirectional pumping. Relatively intensity noise (RIN) being transferred to the signal can be significantly suppressed by reducing first-order reflection near the input end. © 2015 OSA.
Resumo:
This paper proposes extended nonlinear analytical models, third-order models, of compliant parallelogram mechanisms. These models are capable of capturing the accurate effects from the very large axial force within the transverse motion range of 10% of the beam length through incorporating the terms associated with the high-order (up to third-order) axial force. Firstly, the free-body diagram method is employed to derive the nonlinear analytical model for a basic compliant parallelogram mechanism based on load-displacement relations of a single beam, geometry compatibility conditions, and load-equilibrium conditions. The procedures for the forward solutions and inverse solutions are described. Nonlinear analytical models for guided compliant multi-beam parallelogram mechanisms are then obtained. A case study of the compound compliant parallelogram mechanism, composed of two basic compliant parallelogram mechanisms in symmetry, is further implemented. This work intends to estimate the internal axial force change, the transverse force change, and the transverse stiffness change with the transverse motion using the proposed third-order model in comparison with the first-order model proposed in the prior art. In addition, FEA (finite element analysis) results validate the accuracy of the third-order model for a typical example. It is shown that in the case study the slenderness ratio affects the result discrepancy between the third-order model and the first-order model significantly, and the third-order model can illustrate a non-monotonic transverse stiffness curve if the beam is thin enough.
Resumo:
This paper reports a case study in the use of proof planning in the context of higher order syntax. Rippling is a heuristic for guiding rewriting steps in induction that has been used successfully in proof planning inductive proofs using first order representations. Ordinal arithmetic provides a natural set of higher order examples on which transfinite induction may be attempted using rippling. Previously Boyer-Moore style automation could not be applied to such domains. We demonstrate that a higher-order extension of the rippling heuristic is sufficient to plan such proofs automatically. Accordingly, ordinal arithmetic has been implemented in lambda-clam, a higher order proof planning system for induction, and standard undergraduate text book problems have been successfully planned. We show the synthesis of a fixpoint for normal ordinal functions which demonstrates how our automation could be extended to produce more interesting results than the textbook examples tried so far.
Resumo:
In this thesis, we perform a next-to-leading order calculation of the impact of primordial magnetic fields (PMF) into the evolution of scalar cosmological perturbations and the cosmic microwave background (CMB) anisotropy. Magnetic fields are everywhere in the Universe at all scales probed so far, but their origin is still under debate. The current standard picture is that they originate from the amplification of initial seed fields, which could have been generated as PMFs in the early Universe. The most robust way to test their presence and constrain their features is to study how they impact on key cosmological observables, in particular the CMB anisotropies. The standard way to model a PMF is to consider its contribution (quadratic in the magnetic field) at the same footing of first order perturbations, under the assumptions of ideal magneto-hydrodynamics and compensated initial conditions. In the perspectives of ever increasing precision of CMB anisotropies measurements and of possible uncounted non-linear effects, in this thesis we study effects which go beyond the standard assumptions. We study the impact of PMFs on cosmological perturbations and CMB anisotropies with adiabatic initial conditions, the effect of Alfvén waves on the speed of sound of perturbations and possible non-linear behavior of baryon overdensity for PMFs with a blue spectral index, by modifying and improving the publicly available Einstein-Boltzmann code SONG, which has been written in order to take into account all second-order contributions in cosmological perturbation theory. One of the objectives of this thesis is to set the basis to verify by an independent fully numerical analysis the possibility to affect recombination and the Hubble constant.
Resumo:
Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.
Resumo:
The use of screening techniques, such as an alternative light source (ALS), is important for finding biological evidence at a crime scene. The objective of this study was to evaluate whether biological fluid (blood, semen, saliva, and urine) deposited on different surfaces changes as a function of the age of the sample. Stains were illuminated with a Megamaxx™ ALS System and photographed with a Canon EOS Utility™ camera. Adobe Photoshop™ was utilized to prepare photographs for analysis, and then ImageJ™ was used to record the brightness values of pixels in the images. Data were submitted to analysis of variance using a generalized linear mixed model with two fixed effects (surface and fluid). Time was treated as a random effect (through repeated measures) with a first-order autoregressive covariance structure. Means of significant effects were compared by the Tukey test. The fluorescence of the analyzed biological material varied depending on the age of the sample. Fluorescence was lower when the samples were moist. Fluorescence remained constant when the sample was dry, up to the maximum period analyzed (60 days), independent of the substrate on which the fluid was deposited, showing the novelty of this study. Therefore, the forensic expert can detect biological fluids at the crime scene using an ALS even several days after a crime has occurred.