991 resultados para Field class
Resumo:
The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1
Resumo:
Aims. We determine the iron distribution function (IDF) for bulge field stars, in three different fields along the Galactic minor axis and at latitudes b = -4 degrees, b = -6 degrees, and b = -12 degrees. A fourth field including NGC 6553 is also included in the discussion. Methods. About 800 bulge field K giants were observed with the GIRAFFE spectrograph of FLAMES@VLT at spectral resolution R similar to 20 000. Several of them were observed again with UVES at R similar to 45 000 to insure the accuracy of the measurements. The LTE abundance analysis yielded stellar parameters and iron abundances that allowed us to construct an IDF for the bulge that, for the first time, is based on high-resolution spectroscopy for each individual star. Results. The IDF derived here is centered on solar metallicity, and extends from [Fe/H] similar to -1.5 to [Fe/H] similar to + 0.5. The distribution is asymmetric, with a sharper cutoff on the high-metallicity side, and it is narrower than previously measured. A variation in the mean metallicity along the bulge minor axis is clearly between b = -4 degrees and b = -6 degrees ([Fe/H] decreasing similar to by 0.6 dex per kpc). The field at b = -12 degrees. is consistent with the presence of a gradient, but its quantification is complicated by the higher disk/bulge fraction in this field. Conclusions. Our findings support a scenario in which both infall and outflow were important during the bulge formation, and then suggest the presence of a radial gradient, which poses some challenges to the scenario in which the bulge would result solely from the vertical heating of the bar.
Resumo:
Strangelets arriving from the interstellar medium are an interesting target for experiments searching for evidence of this hypothetical state of hadronic matter. We entertain the possibility of a trapped strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely, having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the interstellar medium flux (up to 2 orders of magnitude) due to quasistable trapping.
Resumo:
Context. Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. Aims. For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. Methods. One low-resolution spectrum of the star was obtained with the INT telescope at the Observatorio del Roque de los Muchachos. A time series analysis was performed using both cleanest and singular spectrum analysis algorithms to the CoRoT light curve. To identify the pulsation modes of the observed frequencies, we computed a set of models representative of CoRoT-ID 102761769 by varying its main physical parameters inside the uncertainties discussed. Results. We found two close frequencies related to the star. They are 2.465 c d(-1) (28.5 mu Hz) and 2.441 c d(-1) (28.2 mu Hz). The precision to which those frequencies were found is 0.018 c d(-1) (0.2 mu Hz). The projected stellar rotation was estimated to be 120 km s(-1) from the Fourier transform of spectral lines. If CoRoT-ID 102761769 is a typical Galactic Be star it rotates near the critical velocity. The critical rotation frequency of a typical B5-6 star is about 3.5 c d(-1) (40.5 mu Hz), which implies that the above frequencies are really caused by stellar pulsations rather than star's rotation.
Resumo:
A smooth inflaton potential is generally assumed when calculating the primordial power spectrum, implicitly assuming that a very small oscillation in the inflaton potential creates a negligible change in the predicted halo mass function. We show that this is not true. We find that a small oscillating perturbation in the inflaton potential in the slow-roll regime can alter significantly the predicted number of small halos. A class of models derived from supergravity theories gives rise to inflaton potentials with a large number of steps and many trans-Planckian effects may generate oscillations in the primordial power spectrum. The potentials we study are the simple quadratic (chaotic inflation) potential with superimposed small oscillations for small field values. Without leaving the slow-roll regime, we find that for a wide choice of parameters, the predicted number of halos change appreciably. For the oscillations beginning in the 10(7)-10(8) M(circle dot) range, for example, we find that only a 5% change in the amplitude of the chaotic potential causes a 50% suppression of the number of halos for masses between 10(7)-10(8) M(circle dot) and an increase in the number of halos for masses <10(6) M(circle dot) by factors similar to 15-50. We suggest that this might be a solution to the problem of the lack of observed dwarf galaxies in the range 10(7)-10(8) M(circle dot). This might also be a solution to the reionization problem where a very large number of Population III stars in low mass halos are required.
Resumo:
Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.
Resumo:
Aims. The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods. We analyzed images obtained with the ROSAT satellite, covering similar to 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results. The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which similar to 40 members are added. The other, which we name the ""GU CMa"" cluster, is new, and contains similar to 60 members. The ROSAT sources are young stars with masses down to M(star) similar to 0.5 M(circle dot), and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region.
Resumo:
Context. CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims. We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods. We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results. Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624551]
Resumo:
The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through the formation of internal transport barriers that reduce radial particle and heat transport. However, the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at the plasma edge caused by external perturbations. Contrary to many expectations, it has been observed that such a chaotic region does not uniformize heat and particle deposition on the inner tokamak wall. The deposition is characterized instead by structured patterns called magnetic footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety factor ranges, these effects on the wall are associated with the field line stickiness and escape channels due to internal island chains near the flux surfaces. Comparisons between magnetic footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters show that highly concentrated magnetic footprints can be avoided by properly choosing these parameters. (c) 2008 American Institute of Physics.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.