949 resultados para Fibroblast growth factors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate bone healing in an experimental radial ostectomy in dogs treated with autologous platelet-rich plasma (PRP), through histological, densitometric, radiographic studies, as well as expression of growth factors in the ostectomy gap. Methods: Twenty-one dogs were randomly divided into either a control or a PRP group. All underwent unilateral ostectomy of the radius to generate a gap of 2.0 mm, that was stabilized with external skeletal fixation. The ostectomy gap was either filled with PRP or left empty as a control. The radiographic and densitometric studies were performed after surgery, then at intervals until 60 days during the post-surgery period. Histological and immunohistochemical evaluations were performed at seven or 60 days post-surgery. Analyses were performed using a statistical analysis system, and the level of significance was set at p <0.05. Results: The median radiographic healing score in the PRP group increased significantly between day 0 and day 60. Furthermore, at 60 days, the median healing score and the proportion of healed ostectomies in the control group (score 1; 1/6 healed) and the PRP group (score 5; 4/5 healed) were significantly different. There were differences between groups in radiographic and densitometric values at days 45 and 60. The histological evaluation showed advanced bone healing at 60 days in the PRP group and signs of delayed union in the control group. Clinical relevance: Platelet-rich plasma can be used as an adjuvant therapy because it may promote better bone healing of a radial ostectomy treated with external skeletal fixation in dogs.
Resumo:
Objective. The objective of this preliminary study was to evaluate the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and growth factors in keratocystic odontogenic tumors (KOTs). Study Design. The expression of MMPs, TIMPs, growth factors, and the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway were assessed by immunohistochemistry in 15 cases of KOT and 4 cases of calcifying cystic odontogenic tumor (CCOT). Results. KOT samples expressed significantly higher amounts of MMPs, TIMPs, growth factors, epidermal growth factor receptor (EGFR), and ERK compared with CCOT samples, with the exception of MMP-2 and TIMP-1. Conclusions. MMP-9, TIMP-2, EGF and transforming growth factor alpha act together and likely regulate the proliferation and aggressiveness of KOT. ERK-1/2 serves as the transducer of signals generated by these proteins, which signal through the common receptor, EGFR. This process may be related to the increased proliferation and aggressiveness observed in KOT. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:487-496)
Resumo:
Context: Jansen's metaphyseal chondrodysplasia (JMC) is a rare autosomal dominant disorder caused by activating mutations in the PTH 1 receptor (PTH1R; PTH/PTHrP receptor), leading to chronic hypercalcemia and hypercalciuria. Hypophosphatemia is also a hallmark of JMC, and recently, increased fibroblast growth factor 23 (FGF23) levels have been reported in this syndrome. Hypercalcemia has been associated with increased cardiovascular risk; however, cardiovascular disease has not been extensively investigated in JMC patients. Objective: The aim of the study was to describe the long-term follow-up of a JMC patient with regard to the management of hypercalciuria, the evaluation of FGF23 levels under bisphosphonate treatment, and the investigation of cardiovascular repercussion of chronic hypercalcemia. Results: The diagnosis of JCM was confirmed by molecular analysis (p.H223R mutation in PTH1R). The patient was followed from 5 to 27 yr of age. Asymptomatic nephrolithiasis was diagnosed at 18 yr of age, prompting pharmacological management of hypercalciuria. Treatment with alendronate reduced hypercalciuria; however, normocalciuria was only obtained with the association of thiazide diuretic. Serum FGF23 levels, measured under alendronate treatment, were repeatedly within the normal range. Subclinical cardiovascular disease was investigated when the patient was 26 yr old, after 19 yr of sustained mild hypercalcemia; carotid and vertebral artery ultrasonography was normal, as well as coronary computed tomography angiography (calcium score = 0). Conclusion: The long-term follow-up of our JMC patient has provided insight on therapeutic strategies to control hypercalciuria, on the potential effects of alendronate on FGF23 levels, and on the lack of detectable cardiovascular disease at young adulthood after prolonged exposure to hypercalcemia. (J Clin Endocrinol Metab 97: 1098-1103, 2012)
Resumo:
FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.
Resumo:
Patients with critical limb ischaemia have a high rate of amputation and mortality. We tested the hypothesis that non-viral 1 fibroblast growth factor (NV1FGF) would improve amputation-free survival.
Resumo:
Background: Autogenous bone grafts obtained by different harvesting techniques behave differently during the process of graft consolidation; the underlying reasons are however not fully understood. One theory is that harvesting techniques have an impact on the number and activity of the transplanted cells which contribute to the process of graft consolidation. Materials and Methods: To test this assumption, porcine bone grafts were harvested with four different surgical procedures: bone mill, piezosurgery, bone drilling (bone slurry), and bone scraper. After determining cell viability, the release of molecules affecting bone formation and resorption was assessed by reverse transcription polymerase chain reaction and immunoassay. The mitogenic and osteogenic activity of the conditioned media was evaluated in a bioassay with isolated bone cells. Results: Cell viability and the release of molecules affecting bone formation were higher in samples harvested by bone mill and bone scraper when compared with samples prepared by bone drilling and piezosurgery. The harvesting procedure also affected gene expression, for example, bone mill and bone scraper samples revealed significantly higher expression of growth factors such as bone morphogenetic protein-2 and vascular endothelial growth factor compared with the two other modalities. Receptor activator of nuclear factor kappa B ligand expression was lowest in bone scraper samples. Conclusion: These data can provide a scientific basis to better understand the impact of harvesting techniques on the number and activity of transplanted cells, which might contribute to the therapeutic outcome of the augmentation procedure.
Resumo:
Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.
Resumo:
FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.