895 resultados para Feller pig. Instrumented pigs. Pipeline engineering. Pipeline inspection


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Upheaval buckling (UHB) is a common design issue for high temperature buried pipelines. This paper highlights some of thekey issues affecting out-of-straightness (OOS) assessment of pipelines. The following factors are discussed; uplift resistancesoil models, uplift resistance in cohesive soils, uplift mobilisation, ratcheting, uplift resistance at low H/D ratios and thecorrect methodology for load factor selection. A framework for determining ratcheting mobilisation is proposed. Furtherresearch is required to verify and validate this proposed framework. UHB assessment of three different diameter pipelineswere carried out using finite element SAGE PROFILE package incorporating pipeline mobilisation and the results arecompared with semi-analytical formulation proposed by Palmer et al. 1990. The paper also presents a summary of as-laidpipeline features based on projects over the past 10 years.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vibration methods are used to identify faults, such as spanning and loss of cover, in long off-shore pipelines. A pipeline `pig', propelled by fluid flow, generates transverse vibration in the pipeline and the measured vibration amplitude reflects the nature of the support condition. Large quantities of vibration data are collected and analyzed by Fourier and wavelet methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a design science approach to solving persistent problems in the international shipping eco system by creating the missing common information infrastructures. Specifically, this paper reports on an ongoing dialogue between stakeholders in the shipping industry and information systems researchers engaged in the design and development of a prototype for an innovative IT-artifact called Shipping Information Pipeline which is a kind of “an internet” for shipping information. The instrumental aim is to enable information seamlessly to cross the organizational boundaries and national borders within international shipping which is a rather complex domain. The intellectual objective is to generate and evaluate the efficacy and effectiveness of design principles for inter-organizational information infrastructures in the international shipping domain that can have positive impacts on global trade and local economies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The most promising way to maintain reliable data transfer across the rapidly fluctuating channels used by next generation multiple-input multiple-output communications schemes is to exploit run-time variable modulation and antenna configurations. This demands that the baseband signal processing architectures employed in the communications terminals must provide low cost and high performance with runtime reconfigurability. We present a softcore-processor based solution to this issue, and show for the first time, that such programmable architectures can enable real-time data operation for cutting-edge standards
such as 802.11n; furthermore, by exploiting deep processing pipelines and interleaved task execution, the cost and performance of these architectures is shown to be on a par with traditional dedicated circuit based solutions. We believe this to be the first such programmable architecture to achieve this, and the combination of implementation efficiency and programmability makes this implementation style the most promising approach for hosting such dynamic architectures.