982 resultados para Far North Queensland
Resumo:
Benthic foraminiferal assemblages from northeast Atlantic DSDP Sites 609, 610, and 611 have been interpreted with reference to modern assemblages known to be linked with the overlying bottom-water masses. It is shown that the water masses in the late Miocene to Pleistocene were similar to those of today. The distribution of the water masses changed with time, however. Antarctic Bottom Water ("AABW"), which at present is restricted to the area south of the Azores, reached as far north as the Gibbs Fracture Zone in the early Pliocene. Increased production of North Atlantic Deep Water in the late Pliocene displaced the AABW to the south
Resumo:
Based on discrete samples, we report new high-resolution records of the ~185 kyr Iceland Basin (IB) geomagnetic excursion from Ocean Drilling Project (ODP) Site 1063 on the Bermuda Rise (sedimentation rate 32 cm/kyr) and from ODP Site 983 in the far North Atlantic (sedimentation rate 18 cm/kyr). Two records from Holes 1063A and 1063B are very consistent, and provide the highest resolution of the detailed field behaviour during the IB excursion obtained so far. Inclination records from Holes 983B and 983C in the far North Atlantic are also very consistent, whereas declination anomalies deviate more notably. The pseudo-Thellier (PT) technique was applied along with more conventional palaeointensity proxies (NRM/ARM and NRM/kappa) to recover relative palaeointensity (RPI) estimates from Hole 1063A and Hole 983B. As expected, these proxies indicate that the field intensity generally dropped at both sites during the IB excursion, but also that the history of RPI from the two sites is different. VGPs from Site 1063 indicate that the field at this location experienced some stop-and-go behaviour between patches of intense vertical flux over North America and the tip of South America, areas which coincide fairly well with patches of preferred transitional VGP clustering from reversals and zones of high seismic velocity in the lower mantle. Changes in RPI at this location were generally gradual, possibly due to the proximity of these flux patches, and the first period of VGP-clustering over North America was accompanied by a conspicuous increase in RPI. VGPs from Site 983 track along a different path, and the associated RPI changes are very abrupt and completely synchronous with the onset and termination of the excursion. The differing VGP paths from Sites 1063 and 983 indicate that the global field structure during the IB excursion was not dominated by a single dipole.
Resumo:
The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.
Resumo:
Late Cenozoic ash deposits cored in Deep Sea Drilling Project Leg 19 in the far northwest Pacific and in the Bering Sea have altered to bentonite beds. Some bentonite layers were subsequently replaced by carbonate beds. A significant part of the Neogene volcanic history of land areas adjacent to the far north Pacific is represented by these diagenetic deposits. Bentonite beds are composed of authigenic smectite and minor amounts of clinoptilolite. Authigenic smectite has fewer illite layers than detrital smectite. Opal-A and opal-CT, abundant in Bering Sea sediment, are not found in ash or bentonite layers. The percentage of smectite in the total clay-mineral assemblage of ash beds is greater than that for adjacent terrigenous sediment, but the total amount of clay minerals in ash sequences is less than in surrounding deposits. Morphology of the 17-Å peak of smectite found in ash may represent newly formed, poorly crystalline smectite. Smectite becomes better crystallized as bentonite layers form. The percentage of smectite of the total clay-mineral assemblage in bentonite beds is greater than that in surrounding sediment, and, in contrast to ash beds, the total amount of clay minerals (mostly smectite) in bentonite layers is greater than in adjacent terrigenous sediment. Apparently, silica is not mobilized when volcanic ash layers transform to bentonite beds. Saponite-nontronite varieties of smectite and high Fe/Al and Ti/Al ratios distinguish bentonite beds derived from basaltic parent material from those beds formed from more silicic volcanic ash. These silicic ash beds produce bentonite composed mostly of montmorillonite. The basal sediment section at site 192 is rich with bentonite beds. Smectite in the upper part of this section (Eocene) was formed by low-temperature diagenesis of volcanic debris of intermediate or more silicic composition derived from arc or Pacific volcanoes. In contrast, smectite from the lowest 10 to 20 m of the sedimentary section (Cretaceous) is formed from either low-temperature or hydrothermal alteration of the underlying basaltic basement and associated pyroclastic debris. This near-basement smectite contains Mg and K acquired from sea water and Si, Al, Fe, Ti, and Mn released from the volcanic material.
Resumo:
Sea surface temperatures and sea-ice extent are the most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to the Atlantic and the Indian sectors, the Pacific sector of the Southern Ocean has been insufficiently investigated so far. To cover this gap of information we present diatom-based estimates of summer sea surface temperature (SSST) and winter sea-ice concentration (WSI) from 17 sites in the polar South Pacific to study the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 cal. years BP). Applied statistical methods are the Imbrie and Kipp Method (IKM) and the Modern Analog Technique (MAT) to estimate temperature and sea-ice concentration, respectively. Our data display a distinct LGM east-west differentiation in SSST and WSI with steeper latitudinal temperature gradients and a winter sea-ice edge located consistently north of the Pacific-Antarctic Ridge in the Ross sea sector. In the eastern sector of our study area, which is governed by the Amundsen Abyssal Plain, the estimates yield weaker latitudinal SSST gradients together with a variable extended winter sea-ice field. In this sector, sea-ice extent may have reached sporadically the area of the present Subantarctic Front at its maximum LGM expansion. This pattern points to topographic forcing as major controller of the frontal system location and sea-ice extent in the western Pacific sector whereas atmospheric conditions like the Southern Annular Mode and the ENSO affected the oceanographic conditions in the eastern Pacific sector. Although it is difficult to depict the location and the physical nature of frontal systems separating the glacial Southern Ocean water masses into different zones, we found a distinct temperature gradient in latitudes straddled by the modern Southern Subtropical Front. Considering that the glacial temperatures north of this zone are similar to the modern, we suggest that this represents the Glacial Southern Subtropical Front (GSSTF), which delimits the zone of strongest glacial SSST cooling (>4K) to its North. The southern boundary of the zone of maximum cooling is close to the glacial 4°C isotherm. This isotherm, which is in the range of SSST at the modern Antarctic Polar Front (APF), represents a circum-Antarctic feature and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). We also assume that a glacial front was established at the northern average winter sea ice edge, comparable with the modern Southern Antarctic Circumpolar Current Front (SACCF). During the glacial, this front would be located in the area of the modern APF. The northward deflection of colder than modern surface waters along the South American continent leads to a significant cooling of the glacial Humboldt Current surface waters (4-8K), which affects the temperature regimes as far north as into tropical latitudes. The glacial reduction of ACC temperatures may also result in the significant cooling in the Atlantic and Indian Southern Ocean, thus may enhance thermal differentiation of the Southern Ocean and Antarctic continental cooling. Comparison with temperature and sea ice simulations for the last glacial based on numerical simulations show that the majority of modern models overestimate summer and winter sea ice cover and that there exists few models that reproduce our temperature data rather well.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte chorographique des environs de Lisbonne, dressée sous la direction de Ch.les Picquet par Guerin De Lamotte, ingenieur géographe d' après les opérations trigonométriques de Mr. Ciera et les levés des ingrs. Portugais et Français; Richard Wahl sculpt. Paris. It was published by Picquet in 1821 Scale [ca. 1:57,000]. Covers Lisbon region and Portugal as far north as Torres Vedras and south to Setúbal. Map in French and Portuguese. The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, UTM Zone 29N coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortification, and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Abundant and diverse polycystine radiolarian faunas from ODP Leg 181, Site 1123 (0-1.2 Ma at ~21 kyr resolution) and Site 1124 (0-0.6 Ma, ~5 kyr resolution, with a disconformity between 0.42-0.22 Ma) have been used to infer Pleistocene-Holocene paleoceanographic changes north of the Subtropical Front (STF), offshore eastern New Zealand, southwest Pacific. The abundance of warm-water taxa relative to cool-water taxa was used to determine a radiolarian paleotemperature index, the Subtropical (ST) Index. ST Index variations show strong covariance with benthic foraminifera oxygen isotope records from Site 1123 and exhibit similar patterns through Glacial-Interglacial (G-I) cycles of marine isotope stages (MIS) 15-1. At Site 1123, warm-water taxa peak in abundance during Interglacials (reaching ~8% of the total fauna). Within Glacials cool-water taxa increase to ~15% (MIS2) of the fauna. Changes in radiolarian assemblages at Site 1124 indicate similar but much better resolved trends through MIS15-12 and 7-1. Pronounced increases in warm-water taxa occur at the onset of Interglacials (reaching ~15% of the fauna), whereas the abundance of cool-water taxa increases in Glacials peaking in MIS2 (~17% of the fauna). Overall warmer conditions at Site 1124 during the last 600 kyrs indicate sustained influence of the subtropical, warm East Cape Current (ECC). During Interglacials radiolarian assemblages suggest an increase in marine productivity at both sites which might be due to predominance of micronutrient-rich Subtropical Water. At Site 1123, an increased abundance of deep-dwelling taxa in MIS 13 and 9 suggests enhanced vertical mixing. During Glacials, reduced vigour of ECC flow combined with northward expansion of cool, micronutrient-poor Subantarctic Water occurs. Only at Site 1123 there is evidence of a longitudinal shift of the STF, reaching as far north as 41°S.
Resumo:
Planktonic foraminiferal faunas of the southeast Pacific indicate that sea surface temperatures (SST) have varied by as much as 8-10°C in the Peru Current, and by ?5-7°C along the equator, over the past 150,000 years. Changes in SST at times such as the Last Glacial Maximum reflect incursion of high-latitude species Globorotalia inflata and Neogloboquadrina pachyderma into the eastern boundary current and as far north as the equator. A simple heat budget model of the equatorial Pacific shows that observed changes in Peru Current advection can account for about half of the total variability in equatorial SSTs. The remaining changes in equatorial SST, which are likely related to local changes in upwelling or pycnocline depth, precede changes in polar climates as recorded by d18O. This partitioning of processes in eastern equatorial Pacific SST reveals that net ice-age cooling here reflects first a rapid response of equatorial upwelling to insolation, followed by a later response to changes in the eastern boundary current associated with high-latitude climate (which closely resembles variations in atmospheric CO2 as recorded in the Vostok ice core). Although precise mechanisms responsible for the equatorial upwelling component of climate change remain uncertain, one likely candidate that may operate independently of the ice sheets is insolation-driven changes in El Niño/Southern Oscillation (ENSO) frequency. Early responses of equatorial SST detected both here and elsewhere highlight the sensitivity of tropical systems to small changes in seasonal insolation. The scale of tropical changes we have observed are substantially greater than model predictions, suggesting a need for further quantitative assessment of processes associated with long-term climate change.
Resumo:
The improved understanding of the pollen signal in the marine sediments offshore of northwest Africa is applied to deep-sea core M 16017-2 at 21°N. Downcore fluctuations in the percentage, concentration and influx diagrams record latitudinal shifts of the main northwest African vegetation zones and characteristics of the trade winds and the African Easterly Jet. Time control is provided by 14C ages and 180 records. During the period 19,000-14,000 yr B.P. a compressed savanna belt extended between about 12 ° and 14-15°N. The Sahara had maximally expanded northward and southward under hyperarid climatic conditions. The belt with trade winds and dominant African Easterly Jet transport had not shifted latitudinally. The trade winds were strong as compared to the modern situation but around 13,000 yr B.P. the trade winds weakened. After 14,000 yr B.P. the climate became less arid south of the Sahara and a first spike of fluvial runoff is registered around 13,000 yr B.P. Fluvial runoff increased strongly around 11,000 yr B.P. and maximum runoff is recorded from about 9000-7800 yr B.P. Around 12,500 yr B.P. the savanna belt started to shift northward and became richer in woody species: it shifted about 6° of latitude, reached its northernmost position during the period of 9200-7800 yr B.P. and extended between about 16° and 24°N at that time. Tropical forest had reached its maximum expansion and the Guinea zone reached as far north as about 15°N, reflecting very humid climatic conditions south of the Sahara. North of the Sahara the climate also became more humid and Mediterranean vegetation developed rapidly. The Sahara had maximally contracted and the trade winds were weak and comparable with the present day intensity. After about 7800 yr B.P. the southern fringe of the Sahara and accordingly the savanna belt, shifted rapidly southward again.
Resumo:
A relative sea-level curve for the Holocene is constructed for Polyarny on the Kola Peninsula, northwest Russia. The curve is based on 18 radiocarbon dates of isolation contacts, identified from lithological and diatomological criteria, in nine lake basins situated between 12 and 57 m a.s.l. Most of the lakes show a conformable, regressive I-II-III (marine-transitional-freshwater) facies succession, indicating a postglacial history comprising an early (10,000-9000 radiocarbon years BP) phase of rapid, glacio-isostatically induced emergence (~5 cm/year) and a later phase (after 7000 years BP,) having a moderate rate of emergence (<0.5 cm/year). Three lakes together record a phase of very low rate of emergence or slight sea-level rise at a level of ~27 m a.s.l., between 8500 and 7000 years BP, which correlates with the regional Tapes transgression. Pollen stratigraphy in the highest lake shows that the area was deglaciated before the Younger Dryas and that previously reconstructed Younger Dryas glacier margins along the north Kola coast lie too far north
Resumo:
"Notes on mammals collected and observed in the northern Mackenzie River district ... with remarks on explorers and explorations of the far North, by R. MacFarlane": p. 151-283.
Resumo:
One of the key environmental concerns about shrimp farming is the discharge of waters with high levels of nutrients and suspended solids into adjacent waterways. In this paper we synthesize the results of our multidisciplinary research linking ecological processes in intensive shrimp ponds with their downstream impacts in tidal, mangrove-lined creeks. The incorporation of process measurements and bioindicators, in addition to water quality measurements, improved our understanding of the effect of shrimp farm discharges on the ecological health of the receiving water bodies. Changes in water quality parameters were an oversimplification of the ecological effects of water discharges, and use of key measures including primary production rates, phytoplankton responses to nutrients, community shifts in zooplankton and delta(15)N ratios in marine plants have the potential to provide more integrated and robust measures. Ultimately, reduction in nutrient discharges is most likely to ensure the future sustainability of the industry. (C) 2003 Elsevier Ltd. All rights reserved.