994 resultados para FULLERENE FILM ELECTRODES
Resumo:
Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A general strategy has been developed for fabrication of ultrathin monolayer and multilayer composite films composed of nearly all kinds of polyoxometalates (POMs), including isopolyanions (IPAs), and heteropolyanions (HPAs). It involves stepwise adsorption between the anionic POMs and a cationic polymer on alkanethiol (cysteamine and 3-mercaptopropionic acid) self-assembled monolayers (SAMs) based on electrostatic interaction. Here a Keggin-type HPA SiMo11VO405- was chosen as a main representative to elucidate, in detail, the fabrication and characterization of the as-prepared composite films. A novel electrochemical growth method we developed for film formation involves cyclic potential sweeps over a suitable potential range in modifier solutions. It was comparatively studied with a commonly used method of immersion growth, i.e., alternately dipping a substrate into modifier solutions. Growth processes and structural characteristics of the composite films are characterized in detail by cyclic voltammetry, UV-vis spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), micro-Fourier transform infrared reflection-absorption spectroscopy (FTIR-RA), and electrochemical quartz crystal microbalance (EQCM). The electrochemical growth is proven to be more advantageous than the immersion growth. The composite films exhibit well-defined surface waves characteristic of the HPAs' redox reactions. In addition, the composite films by the electrochemical growth show a uniform structure and an excellent stability. Ion motions accompanying the redox processes of SiMo11VO405- in multilayer films are examined by in situ time-resolved EQCM and some results are first reported. The strategy used here has been successfully popularized to IPAs as well as other HPAs no matter what structure and composition they have.
Resumo:
An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).
Resumo:
An electrochemical quartz crystal microbalance was employed to monitor directly the growth of vanadium hexacyanoferrate (VHF) films on platinum substrates during electrodeposition and interfacial coagulation in the solution containing sulfuric acid electrolyte, vanadium(IV) and hexacyanoferrate(III). Mass changes of the gold/crystal working electrode were correlated with cyclic voltammetry data. Effects of cations (NH4+, Li+, Na+ and K+), anions (SO42- and NO3-) and solvent during redox reactions of the films were studied. The results show that cations were incorporated into the film during reduction and expelled from the film during oxidation. Solvent also participates in VHF electrochemistry, and its role cannot be neglected. Anions play no role in VHF electrochemistry. (C) 1997 Elsevier Science S.A.
Resumo:
In this paper, we have investigated the reactivity of the molybdenum oxide film toward some standard redox systems (e.g., ferrocene (Fc) and its derivatives) and observed a few interesting phenomena. The results demonstrate that the electrochemical behaviour of Fc and its derivatives at the oxide-modified carbon fiber (CF) microelectrode differs from that at a bare CF microelectrode, The conductivity of the molybdenum oxide film is seriously affected by the range and the direction of the potential scan, which influences the electrochemical behaviour of these redox systems at the film electrode. If the cycling potential is more positive than the reduction potential of the molybdenum oxide film, the reduction and oxidation peak currents of Fc and its derivatives could not be observed. The result indicates that the molybdenum oxide film on a microelectrode surface cannot transfer electrons between the surface of the electrode and Fc or its derivatives due to the existence of a high resistance between the interface in these potential ranges. On the other hand, if the lower limit of the scan potential was extended to a potential more negative than the reduction peak potential of the film, the oxidation peak of Fc or its derivatives appeared at about the potential relative to E-0 of Fc or its derivatives on the bare electrode, and the peak current is proportional to the concentration of these couples in the electrolyte. To our surprise, the peak height on the modified electrode is much larger than that on the bare CF microelectrode under the same conditions in the range of low concentration of these couples, and the oxidation peak potential of these couples is more negative than that on the bare CF microelectrode. On the basis of the experimental observation, we propose that these redox couples may undergo an interaction with the reduction state of the molybdenum oxide film. The new phenomena that we observed have been explained by using this interaction. (C) 1997 Elsevier Science S.A.
Resumo:
Two stable redox couples, accompanying clear color switches between yellow green and blue, can be observed when the VHCF-coated film platinum electrodes are cyclic potential scanned in 3.6 M H2SO4 and 0.2 M K2SO4 electrolyte solution. Electrochemical results and in situ Fourier transfer infrared (FT-IR) spectroscopy demonstrate that the redox reaction of the electroactive iron sites is related to the first redox couple (E-1/2 = 0.81 V) while the second redox couple (E-1/2 = 1.01 V) is due to the redox reactions of the electroactive vanadyl ions. Under the proper conditions, such as in high acidic solutions or thin films (deposition time is less than 2 min) and so on, the third redox couple (E-1/2 = 0.89-0.94 V) can be observed on the cyclic voltammograms, which originates from the redox reactions of the interstitial vanadyl ions. This electrochemical reaction mechanism is investigated by in situ probe beam deflection technique, exchange of K+ ions accompanies with redox reaction of the iron sites, but for redox reaction of the vanadyl ions, both H+ ions, K+ ions and water molecules are involved.
Resumo:
The electrocatalytic oxidation of methanol on polypyrrole (PPy) film modified with platinum microparticles has been studied by means of electrochemical and in situ Fourier transform infrared techniques. The Pt microparticles, which were incorporated in the PPy film by the technique of cyclic voltammetry, were uniformly dispersed. The modified electrode exhibits significant electrocatalytic activity for the oxidation of methanol. The catalytic activities were found to be dependent on Pt loading and the thickness of the PPy film. The linearly adsorbed CO species is the only intermediate of electrochemical oxidation of methanol and can be readily oxidized at the modified electrodes. The enhanced electrocatalytic activities may be due to the uniform dispersion of Pt microparticles in the PPy film and the synergistic effects of the highly dispersed Pt microparticles and the PPy film. Finally, a reaction mechanism is suggested.
Resumo:
The electrocatalytic oxidation of methanol on polythionine(PTn) film modified with Pt microparticles has been studied by means of cyclic voltammetry and in-situ FTIR spectroscopy. The Pt microparticles produced by cyclic voltammetry were highly dispersed in and on the PTn film. The modified electrodes exhibit significant electrocatalytic activity for the oxidation of methano and the catalytic activity was found in dependence on the Pt loading. The linearly adsorbed CO species is the only intermediate in the oxidation of methanol and the abnormal IR spectra for adsorbed CO were observed. On such modified electrodes, adsorbed CO species derived from methanol can be readily oxidized. The enhanced electrocatalytic activity may be ascribed to the high dispersion of Pt microparticles in and on the PTn film and the synergestic effect between Pt microparticles and the polymer. From the above results, a possible reaction mechanism was proposed.
Resumo:
The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.
Resumo:
The properties of the films formed in the electrolyte of PC/DME LiClO4 on two kinds of carbon materials were examined by cathodic polarization measurements. The result suggested that the films on both carbon electrodes have different morphology which resulted in the different cen performance of the two carbon anodes.
Resumo:
The electrochemical behavior of Dawson-type P2W18O626- adsorbed on a glassy carbon electrode and doped in a polypyrrole film electrode was described. These modified electrodes all display catalytic activity for nitrite reduction, either in acid solutions or in pH > 4.0 solutions.
Resumo:
Probe beam deflection(PBD) technique together with electrochemical techniques such as cyclic voltammetry was used to study the ion exchange in prussian blue(PB) film and its analogue indium hexacyanoferrate (InHCF) chemically modified electrodes, The ion exchange mechanism of PB was verified as following: K2Fe2+FeI(CN)(6)(-e--K+)reversible arrow(+e-+K+)KFe(3+)Fe(I)(CN)(6)(-xe--xK+)reversible arrow(+xe-+xK+) [Fe3+FeI(CN)(6)](x)[KFe3+FeI(CN)(6)](1-x) where on reduction in contact with an acidic KCl electrolyte, H+ enter PB film before K+. Both the cations and anions participate concurrently in the redox process of InHCF, meanwhile K+ ion plays a major role in the whole charge transfer process of this film with increasing radii of anions.
Resumo:
The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.
Resumo:
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.
Resumo:
Polypyrrole doped with p-toluenesulfonate was electropolymerized onto highly oriented pyrolytic graphite (HOPG), glassy carbon (GC) and Pt electrode surfaces under the same experimental conditions. The resulting films were studied by scanning tunneling m