978 resultados para Exponential integrators
Resumo:
The reason that the indefinite exponential increase in the number of one’s ancestors does not take place is found in the law of sibling interference, which can be expressed by the following simple equation:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\begin{matrix}{\mathit{N}}_{{\mathit{n}}} \enskip & \\ {\mathit{{\blacksquare}}} \enskip & \\ {\mathit{ASZ}} \enskip & \end{matrix} {\mathrm{\hspace{.167em}{\times}\hspace{.167em}2\hspace{.167em}=\hspace{.167em}}}{\mathit{N_{n+1},}}\end{equation*}\end{document} where Nn is the number of ancestors in the nth generation, ASZ is the average sibling size of these ancestors, and Nn+1 is the number of ancestors in the next older generation (n + 1). Accordingly, the exponential increase in the number of one’s ancestors is an initial anomaly that occurs while ASZ remains at 1. Once ASZ begins to exceed 1, the rate of increase in the number of ancestors is progressively curtailed, falling further and further behind the exponential increase rate. Eventually, ASZ reaches 2, and at that point, the number of ancestors stops increasing for two generations. These two generations, named AN SA and AN SA + 1, are the most critical in the ancestry, for one’s ancestors at that point come to represent all the progeny-produced adults of the entire ancestral population. Thereafter, the fate of one’s ancestors becomes the fate of the entire population. If the population to which one belongs is a successful, slowly expanding one, the number of ancestors would slowly decline as you move toward the remote past. This is because ABZ would exceed 2. Only when ABZ is less than 2 would the number of ancestors increase beyond the AN SA and AN SA + 1 generations. Since the above is an indication of a failing population on the way to extinction, there had to be the previous AN SA involving a far greater number of individuals for such a population. Simulations indicated that for a member of a continuously successful population, the AN SA ancestors might have numbered as many as 5.2 million, the AN SA generation being the 28th generation in the past. However, because of the law of increasingly irrelevant remote ancestors, only a very small fraction of the AN SA ancestors would have left genetic traces in the genome of each descendant of today.
Resumo:
The great adaptability shown by RNA viruses is a consequence of their high mutation rates. Here we investigate the kinetics of virus fitness gains during repeated transfers of large virus populations in cell culture. Results always show that fitness increases exponentially. Low fitness clones exhibit regular increases observed as biphasic periods of exponential evolutionary improvement, while neutral clones show monophasic kinetics. These results are significant for RNA virus epidemiology, optimal handling of attenuated live virus vaccines, and routine laboratory procedures.
Resumo:
The first few low-lying spin states of alternant polycyclic aromatic hydrocarbon (PAH) molecules of several shapes showing defect states induced by contour hydrogenation have been studied both by ab initio methods and by a precise numerical solution of Pariser-Parr-Pople (PPP) interacting model. In accordance with Lieb's theorem, the ground state shows a spin multiplicity equal to one for balanced molecules, and it gets larger values for imbalanced molecules (that is, when the number of π electrons on both subsets is not equal). Furthermore, we find a systematic decrease of the singlet-triplet splitting as a function of the distance between defects, regardless of whether the ground state is singlet or triplet. For example, a splitting smaller than 0.001 eV is obtained for a medium size C46H28 PAH molecule (di-hydrogenated [11]phenacene) showing a singlet ground state. We conclude that π electrons unbound by lattice defects tend to remain localized and unpaired even when long-range Coulomb interaction is taken into account. Therefore they show a biradical character (polyradical character for more than two defects) and should be studied as two or more local doublets. The implications for electron transport are potentially important since these unpaired electrons can trap traveling electrons or simply flip their spin at a very small energy cost.
Resumo:
This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced.
Resumo:
In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.
Resumo:
Includes bibliographies (p. 23).
Resumo:
Bibliography: p. 27-28.
Resumo:
"UILU-ENG 79 1716."
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
"UILU-ENG 78-1734."
Resumo:
Typescript.
Resumo:
Photocopy. Arlington, Va. : Armed Services Technical Information Agency, [1970] -- 34 leaves ; 26 x 34 cm.
Resumo:
Mode of access: Internet.