994 resultados para Equivalent network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the design and deployment results for PosNet - a large-scale, long-duration sensor network that gathers summary position and status information from mobile nodes. The mobile nodes have a fixed-sized memory buffer to which position data is added at a constant rate, and from which data is downloaded at a non-constant rate. We have developed a novel algorithm that performs online summarization of position data within the buffer, where the algorithm naturally accommodates data input and output rate mismatch, and also provides a delay-tolerant approach to data transport. The algorithm has been extensively tested in a large-scale long-duration cattle monitoring and control application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a mobile, wireless sensor/actuator network application for use in the cattle breeding industry. Our goal is to prevent fighting between bulls in on-farm breeding paddocks by autonomously applying appropriate stimuli when one bull approaches another bull. This is an important application because fighting between high-value animals such as bulls during breeding seasons causes significant financial loss to producers. Furthermore, there are significant challenges in this type of application because it requires dynamic animal state estimation, real-time actuation and efficient mobile wireless transmissions. We designed and implemented an animal state estimation algorithm based on a state-machine mechanism for each animal. Autonomous actuation is performed based on the estimated states of an animal relative to other animals. A simple, yet effective, wireless communication model has been proposed and implemented to achieve high delivery rates in mobile environments. We evaluated the performance of our design by both simulations and field experiments, which demonstrated the effectiveness of our autonomous animal control system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.