920 resultados para Equação de Maxwell 2D
Resumo:
Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.
Resumo:
O estudo do fluxo de água e do transporte escalar em reservatórios hidrelétricos é importante para a determinação da qualidade da água durante as fases iniciais do enchimento e durante a vida útil do reservatório. Neste contexto, um código de elementos finitos paralelo 2D foi implementado para resolver as equações de Navier-Stokes para fluido incompressível acopladas a transporte escalar, utilizando o modelo de programação de troca de mensagens, a fim de realizar simulações em um ambiente de cluster de computadores. A discretização espacial é baseada no elemento MINI, que satisfaz as condições de Babuska-Brezzi (BB), que permite uma formulação mista estável. Todas as estruturas de dados distribuídos necessárias nas diferentes fases do código, como pré-processamento, solução e pós-processamento, foram implementadas usando a biblioteca PETSc. Os sistemas lineares resultantes foram resolvidos usando o método da projeção discreto com fatoração LU por blocos. Para aumentar o desempenho paralelo na solução dos sistemas lineares, foi empregado o método de condensação estática para resolver a velocidade intermediária nos vértices e no centróide do elemento MINI separadamente. Os resultados de desempenho do método de condensação estática com a abordagem da solução do sistema completo foram comparados. Os testes mostraram que o método de condensação estática apresenta melhor desempenho para grandes problemas, às custas de maior uso de memória. O desempenho de outras partes do código também são apresentados.
Resumo:
Esta é uma pesquisa sobre o uso de metáforas na construção de modelos por parte do físico escocês James Clerk Maxwell. O objetivo da pesquisa foi buscar compreender de que maneira o uso de metáforas e modelos é legítimo na ciência e em que medida contribui para seu sucesso. Além disso, busca compreender em que medida o uso de artifícios como modelos e analogias entre ramos distintos da ciência são impulsionadores de sucesso explicativo e preditivo da teoria do físico estudado. Explora as crenças teológicas e filosóficas do autor, que vê o mundo como unidade, permitindo a analogia entre ramos distintos da física. Seus desenvolvimentos em torno de teorias como calor, cores, óptica, magnetismo e eletricidade permitem evidenciar essa visão em todo o seu trabalho. Maxwell é considerado inaugurador de nova metodologia com o uso de modelos e metáforas. Explora o desenvolvimento da teoria das cores, da descrição matemática da estabilidade dos anéis de Saturno e o desenvolvimento da teoria dos gases como preâmbulo à discussão da teoria do eletromagnetismo. Descreve o desenvolvimento teórico do eletromagnetismo em seus diversos momentos. A construção da teoria do eletromagnetismo evidencia paulatino abandono do mecanicismo, uso intenso de modelos e metáforas temporários e ênfase na quantificação e no uso de experimentos. Discute o relacionamento de Maxwell com as discussões filosóficas, sociais e teológicas de sua época, seu engajamento em atividades práticas nesse sentido e suas influências científicas e filosóficas. Descreve e discute os textos filosóficos do cientista, em que se evidenciam sua ontologia, suas crenças teológicas e sua concepção de analogias. Discute a questão do uso de analogias em ciência e compara diversos autores que abordam o tema. A metodologia utilizada foi a de levantamento bibliográfico com análise crítica da literatura do autor e de seus comentadores, além de comentário crítico sobre os textos primários e secundários. Conclui que o sucesso científico de Maxwell deve-se à sua aposta numa unidade do mundo garantida por Deus, bem como na unidade entre o mundo e a mente humana, posturas que mostraram ser bem-sucedidas quando aplicadas à metodologia científica. Conclui também pela legitimidade e necessidade do uso de metáforas e modelos no empreendimento científico.
Resumo:
Apresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.
Resumo:
Neste trabalho, a partição iônica e o potencial de membrana em um eritrócito são analisados via equação de Poisson-Boltzmann modificada, considerando as interações não eletrostáticas presentes entre os íons e macromoléculas, assim como, o potencial β. Este potencial é atribuído à diferença de potencial químico de referência entre os meios intracelular e extracelular e ao transporte ativo de íons. O potencial de Gibbs-Donnan via equação de Poisson-Boltzmann na presença de carga fixa em um sistema contendo uma membrana semipermeável também é estudado. O método de aproximação paraboloide em elementos finitos em um sistema estacionário e unidimensionalé aplicado para resolver a equação de Poisson-Boltzmann em coordenadas cartesianas e esféricas. O parâmetro de dispersão relativo às interações não eletrostáticas écalculado via teoria de Lifshitz. Os resultados em relação ao potencial de Gibbs-Donnan mostram-se adequados, podendo ser calculado pela equação de Poisson-Boltzmann. No sistema contendo um eritrócito, quando o potencial β é considerado igual a zero, não se verifica a diferença iônica observada experimentalmente entre os meios intracelular e extracelular. Dessa forma, os potenciais não eletrostáticos calculados via teoria de Lifshitz têm apenas uma pequena influência no que se refere à alta concentração de íon K+ no meio intracelular em relação ao íon Na+
Equação de referência do Teste do Degrau medida em distância para indivíduos saudáveis e sedentários
Resumo:
O teste de caminhada em seis minutos (TC6M) avalia a capacidade respiratória durante o exercício. Recentemente, o teste do degrau em seis minutos (TD6M) está sendo estudado como uma proposta para essa mesma avaliação. Diante do exposto, o desenvolvimento de uma equação de referência se torna importante. O objetivo desse estudo foi desenvolver uma equação de referência padrão para o Teste do Degrau em Seis minutos. Esse estudo foi do tipo transversal, em que foram selecionados 452 indivíduos. Após a aplicação dos critérios de inclusão/exclusão, foram selecionados 326 sujeitos saudáveis e sedentários com idade entre 20 e 80 anos. Para serem considerados saudáveis, os participantes não podiam ter história de doenças (exceto hipertensão arterial sistêmica ou diabetes mellitus em tratamento) e foram submetidos à radiografia de tórax, espirometria e eletrocardiograma, que deveriam ser normais. O nível de sedentarismo foi avaliado através do International Physical Activity Questionnaire (IPAQ). Foram coletados os seguintes dados demográficos: idade, peso e altura. Todos os indivíduos realizaram TD6M na sua própria cadência (autocadenciado) em um degrau de 16,5 cm de altura, 65 de largura e 30 cm de comprimento. O número de subidas e descidas foi contado por um pedômetro digital. Foram mensuradas a pressão arterial, a frequência cardíaca e a saturação de oxigênio, antes e depois do TD6M. A análise estatística foi realizada pelo software STATA 12.0, e as equações foram desenvolvidas pelo modelo estatístico de regressão linear múltipla. Como resultado, observou-se que os participantes apresentaram exames normais, sendo 135 homens e 191 mulheres. O IPAQ demonstrou 157 ativos, 114 irregularmente ativos e 40 inativos, sendo que 14 indivíduos não responderam. A análise da distância alcançada em relação à idade e à diferença da frequência cardíaca tanto para homens quanto para mulheres mostrou significância estatística, demonstrando a sua importância para o desenvolvimento das equações para cada gênero. Para mulheres: Distância (m) = 88,83 - [(FC final- FC inicial)* 0,23] (Idade *0,37); para homens: Distância (m)= 110,20 - [(FC final- FC inicial)*0,18] (Idade * 0,59). O estudo concluiu que as equações de referência desenvolvidas nesse estudo foram realizadas em uma população de indivíduos saudáveis e sedentários e pode ser usada como padrão de referência para o TD6M.