974 resultados para Enzyme regulation
Resumo:
Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.
Resumo:
Cytochrome P450c17 catalyzes the 17alpha-hydroxylase activity required for glucocorticoid synthesis and the 17,20 lyase activity required for sex steroid synthesis. Most P450 enzymes have fixed ratios of their various activities, but the ratio of these two activities of P450c17 is regulated post-translationally. We have shown that serine phosphorylation of P450c17 and the allosteric action of cytochrome b5 increase 17,20 lyase activity, but it has not been apparent whether these two post-translational mechanisms interact. Using purified enzyme systems, we now show that the actions of cytochrome b5 are independent of the state of P450c17 phosphorylation. Suppressing cytochrome b5 expression in human adrenal NCI-H295A cells by >85% with RNA interference had no effect on 17alpha-hydroxylase activity but reduced 17,20 lyase activity by 30%. Increasing P450c17 phosphorylation could compensate for this reduced activity. When expressed in bacteria, human P450c17 required either cytochrome b5 or phosphorylation for 17,20 lyase activity. The combination of cytochrome b5 and phosphorylation was not additive. Cytochrome b5 and phosphorylation enhance 17,20 lyase activity independently of each other, probably by increasing the interaction between P450c17 and NADPH-cytochrome P450 oxidoreductase.
Resumo:
Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.
Resumo:
Vitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes. We found that RA rapidly activates the protein kinase Calpha isozyme and transmits the activation signal to CREB via the Raf/MEK/extracellular signal-regulated kinase/p90 ribosomal S6 kinase (RSK) pathway. Activated RSK translocated from the cytoplasm to the nucleus, where it phosphorylates CREB. Activated CREB then binds to a cis-acting replication element motif on the promoter (at nucleotides [nt] -878 to -871) of the MUC5AC gene. The depletion of CREB using small interfering RNA abolished not only the RA-induced MUC5AC but also RA-induced MUC2 and MUC5B. Taken together, our findings demonstrate that CREB activation via this nonclassical RA signaling pathway may play an important role in regulating the expression of mucin genes and mediating the early biological effects of RA during normal mucous differentiation in NHTBE cells.
Resumo:
We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection, and the P450 down-regulation was associated with significant morbidity in the animals. Here, we report that oral infection of C57BL/6 mice with C. rodentium, which produced only mild clinical signs and symptoms, produced very similar effects on hepatic P450 expression in this strain. As in HeOu mice, CYP4A mRNAs and proteins were among the most sensitive to down-regulation, whereas CYP4F18 was induced. CYP2D9 mRNA was also induced 8- to 9-fold in the C57BL/6 mice. The time course of P450 regulation followed that of colonic inflammation and bacterial colonization, peaking at 7 to 10 days after infection and returning to normal at 15 to 24 days as the infection resolved. These changes also correlated with the time course of significant elevations in the serum of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha, as well as of interferon-gamma and IL-2, with serum levels of IL-6 being markedly higher than those of the other cytokines. Intraperitoneal administration of C. rodentium produced a rapid down-regulation of P450 enzymes that was quantitatively and qualitatively different from that of oral infection, although CYP2D9 was induced in both models, suggesting that the effects of oral infection on the liver are not due to bacterial translocation.
Resumo:
Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.
Resumo:
Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^
Resumo:
Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^
Resumo:
The cytochrome P450 (P450) monooxygenase system plays a major role in metabolizing a wide variety of xenobiotic as well as endogenous compounds. In performing this function, it serves to protect the body from foreign substances. However, in a number of cases, P450 activates procarcinogens to cause harm. In most animals, the highest level of activity is found in the liver. Virtually all tissues demonstrate P450 activity, though, and the role of the P450 monooxygenase system in these other organs is not well understood. In this project I have studied the P450 system in rat brain; purifying NADPH-cytochrome P450 reductase (reductase) from that tissue. In addition, I have examined the distribution and regulation of expression of reductase and P450 in various anatomical regions of the rat brain.^ NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by SDS-PAGE and Western blot techniques. Kinetic studies utilizing cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P4501A1 as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. These results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.^ Since the brain is not a homogeneous organ, dependent upon the well orchestrated interaction of numerous parts, pathology in one nucleus may have a large impact upon its overall function. Hence, the anatomical distribution of the P450 monooxygenase system in brain is important in elucidating its function in that organ. Related to this is the regulation of P450 expression in brain. In order to study these issues female rats--both ovariectomized and not--were treated with a number of xenobiotic compounds and sex steroids. The brains from these animals were dissected into 8 discrete regions and the presence and relative level of message for P4502D and reductase determined using polymerase chain reaction. Results of this study indicate the presence of mRNA for reductase and P4502D isoforms throughout the rat brain. In addition, quantitative PCR has allowed the determination of factors affecting the expression of message for these enzymes. ^
Resumo:
The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^
Resumo:
Vitamin B$\sb6$ (or pyridoxal 5$\sp\prime$-phosphate, PLP) is an essential, ubiquitous coenzyme that affects many aspects of amino acid and cellular metabolism in all organisms. The goal of this thesis is to examine the regulation of PLP biosynthesis in Escherichia coli K-12. First, PdxH oxidase is a PLP biosynthetic enzyme, which uses molecular oxygen as an electron acceptor under aerobic assay conditions. To test if facultative anaerobic E. coli uses another enzyme to replace the function of PdxH oxidase anaerobically, suppressors of a pdxH null mutant were isolated anaerobically after 2-aminopurine or spontaneous mutagenesis. Only one specific bypass mutation in another PLP biosynthetic gene pdxJ was found, suggesting that PdxH oxidase is able to function anaerobically and PdxT utilizes D-1-deoxyxyulose as a substrate. Second, regulation of the serC (pdxF)-aroA operon, which is involved the biosynthesis of L-serine, PLP and aromatic compounds was examined. A serC (pdxF) single gene transcript and a serC (pdXf)-aroA cotranscript initiated at P$\sb{serC\ (pdxF)}$ upstream of serC (pdxF) were detected. The expression of the operon is activated by leucine responsive regulatory protein (LRP) and repressed by cAMP receptor protein-cAMP complex (CRP$\cdot$cAMP) at the transcriptional level. LRP activates the operon by directly binding to the upstream consensus box. Binding of CRP$\cdot$cAMP to the upstream CRP box diminishes the activation effect of LRP. However, deletion of the CRP box did not affect the repression of CRP$\cdot$cAMP, suggesting that CRP$\cdot$cAMP may repress the operon indirectly by stimulating the activity or level of an unidentified repressor. The overall effect of this regulation is to maximize the expression of the operon when the cells are growing in minimal-glucose medium. In addition, the binding and the transcription of P$\sb{serC\ (pdxF)}$ by RNA polymerase require a supercoiled circular DNA, indicating that DNA supercoiling affects the transcription of the operon. Third, regulation of another PLP biosynthetic gene gapB was also examined. gapB is activated by CRP$\cdot$cAMP and repressed by catabolic repressor activator protein (CRA). However, the activation of CRP$\cdot$cAMP is epistatic to the repression of CRA. Due to the CRA repression, gapB was expressed at a low level in all the media tested, suggesting that it may be the rate-limiting step of PLP biosynthesis. In summary, unlike genes in many biosynthetic pathways, PLP biosynthetic genes are regulated by global regulators that are important for carbon and amino acid metabolism, instead of the end product(s) of the pathway. ^
Resumo:
Retinoic acid regulates cellular growth and differentiation by altering the expression of specific sets of genes, but the molecular mechanism by which this is achieved is unknown. We have used the rapid induction of a specific enzyme, tissue transglutaminase in mouse macrophages, human leukemia cells and a variety of other cell types to study the regulation of gene expression by retinoic acid. Soluble retinoic acid binding proteins, such as cellular Retinoic Acid Binding Protein (cRABP), have been proposed as specific mediators of retinoic acid regulation of gene expression. This thesis demonstrates the lack of cRABP in a number of cell lines which are sensitive to retinoic acid regulation of tissue transglutaminase expression. These cells are also devoid of other soluble retinoic acid binding activity. The level of retinoic acid binding activity that could have been detected (6 fmol) is far below that of most cells and tissues which are sensitive to the effects of retinoic acid on growth and differentiation. A mouse melanoma cell line, S91-C2, was found to contain an unusual retinoic acid binding protein which has a lower affinity for retinoic acid than mouse tissue cRABP and also behaves differently on gel filtration HPLC chromatography.^ The induction of tissue transglutaminase by retinoic acid in macrophages is specifically inhibited by pertussis toxin. Pertussis toxin ADP-riblosylates membrane GTP-binding proteins such as N(,i) and interferes with signalling from plasma membrane receptors to regulatory enzymes. Pertussis toxin inhibition of transglutaminase induction is due to inhibition of tissue transglutaminase mRNA accumulation and is paralleled by the ADP-ribosylation of a 41,000 dalton macrophage membrane protein. It is concluded that soluble retinoic acid binding proteins are not essential for retinoic acid induction of tissue transglutaminase and that a membrane GTP-binding protein is closely linked to the sensitive response of macrophages to retinoic acid. ^
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5′-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mM each of NO3 −, NH4 +, or glutamine (Gln), or 1 mM O-acetylserine (OAS). 35SO4 2− feeding showed that after addition of NH4 +, Gln, or OAS to nitrogen-starved plants, incorporation of 35S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.
Resumo:
Adenosine 5′-phosphosulphate reductase (APR) is considered to be a key enzyme of sulphate assimilation in higher plants. We analysed the diurnal fluctuations of total APR activity and protein accumulation together with the mRNA levels of three APR isoforms of Arabidopsis thaliana. The APR activity reached maximum values 4 h after light onset in both shoots and roots; the minimum activity was detected at the beginning of the night. During prolonged light, the activity remained stable and low in shoots, but followed the normal rhythm in roots. On the other hand, the activity decreased rapidly to undetectable levels within 24 h of prolonged darkness both in shoots and roots. Subsequent re-illumination restored the activity to 50% in shoots and to 20% in roots within 8 h. The mRNA levels of all three APR isoforms showed a diurnal rhythm, with a maximum at 2 h after light onset. The variation of APR2 mRNA was more prominent compared to APR1 and APR3. 35SO42– feeding experiments showed that the incorporation of 35S into reduced sulphur compounds in vivo was significantly higher in light than in the dark. A strong increase of mRNA and protein accumulation as well as enzyme activity during the last 4 h of the dark period was observed, implying that light was not the only factor involved in APR regulation. Indeed, addition of 0.5% sucrose to the nutrient solution after 38 h of darkness led to a sevenfold increase of root APR activity over 6 h. We therefore conclude that changes in sugar concentrations are also involved in APR regulation.